To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
 My watch list
 My saved searches
 My saved topics
 My newsletter
Thermal contact conductance
DefinitionWhen two solid bodies come in contact, such as A and B in Figure 1, heat flows from the hotter body to the colder body. From experience, the temperature profile along the two bodies varies, approximately, as shown in the figure. A temperature drop is observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces. Thermal contact resistance is defined as the ratio between this temperature drop and the average heat flow across the interface.^{[1]} According to Fourier's law, the heat flow between the bodies is found by the relation:
(1) From considerations of energy conservation, the heat flow between the two bodies in contact, bodies A and B, is found as:
(2)
ImportanceThermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials. Some of the fields where contact conductance is of importance are:^{[2]}^{[3]}^{[4]}
Factors influencing contact conductanceThermal contact conductance is a complicated phenomenon, influenced by many factors. Experience shows that the most important ones are as follows: Contact pressureThe contact pressure is the factor of most influence on contact conductance. As contact pressure grows, contact conductance grows (And consequentially, contact resistance becomes smaller). This is attributed to the fact that the contact surface between the bodies grows as the contact pressure grows. Since the contact pressure is the most important factor, most studies, correlations and mathematical models for measurement of contact conductance are done as a function of this factor. Interstitial materialsNo truly smooth surfaces really exist, and surface imperfections are visible under a microscope. As a result, when two bodies are pressed together, contact is only performed in a finite number of points, separated by rather large gaps, as can be shown in Fig. 2. Since that actual contact area is reduced, another resistance for heat flow exists. The gasses/fluids filling these gaps may largely influence the total heat flow across the interface. Air is the most common interstitial material. The thermal conductivity of the interstitial material and its pressure are the two properties governing its influence on contact conductance. In the absence of interstitial materials, such as the bodies are in vacuum, the contact resistance will be much larger, since flow through the intimate contact points is dominant. Surface roughness, waviness and flatnessOne can characterise a surface that has undergone certain finish operations by three properties: Roughness, waviness and flatness. Among these, roughness is of most importance, and is usually indicated by an rms value, σ. Surface deformationsWhen the two bodies come in contact, surface deformation may occur on both bodies. This deformation may either be plastic or elastic, depending on the material properties and the contact pressure. When a surface undergoes plastic deformation, contact resistance is lowered, since the deformation causes the actual contact area to increase^{[5]}^{[6]} Surface cleanlinessThe presence of dust particles, acids, etc., can also influence the contact conductance. Measurement of thermal contact conductanceGoing back to Formula 2, calculation of the thermal contact conductance may prove difficult, even impossible, due to the difficulty in measuring the contact area, A (A product of surface characteristics, as explained earlier). Because of this, contact conductance/resistance is usually found experimentally, by using a standard apparatus. The results of such experiments are usually published in Engineering literature, on magazines such as Journal of Heat Transfer, International Journal of Heat and Mass Transfer, etc. Unfortunately, a centralized database of contact conductance coefficients does not exist, a situation which sometimes causes companies to use outdated, irrelevant data, or not taking contact conductance as a consideration at all. CoCoE (Contact Conductance Estimator), a project founded to solve this problem and create a centralized database of contact conductance data and a computer program that uses it, was started in 2006. References
See alsoCategories: Heat conduction  Thermodynamics 

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Thermal_contact_conductance". A list of authors is available in Wikipedia. 