My watch list
my.chemeurope.com  
Login  

Weatherization




Weatherization (American English) or weatherproofing (British English) is the practice of protecting a building and its interior from the elements, particularly from sunlight, precipitation, and wind, and of modifying a building to reduce energy consumption and optimize energy efficiency.

Weatherization is distinct from building insulation, although building insulation requires weatherization for proper functioning. Many types of insulation can be thought of as weatherization, because they block drafts or protect from cold winds. Whereas insulation primarily reduces conductive heat flow, weatherization primarily reduces convective heat flow.

In the United States, buildings use one third of all energy consumed and two thirds of all electricity. Additionally, they are a major source of the pollution that causes urban air quality problems and pollutants that contribute to climate change. According to Dr. Richard Haut, Senior Research Scientist with the Houston Advanced Research Center,buildings account for “49 percent of sulfur dioxide emissions, 25 percent of nitrous oxide emissions, and 10 percent of particulate emissions, all of which damage urban air quality.”

Weatherization procedures

Typical weatherization procedures include:

  • Sealing bypasses (cracks, gaps, holes), especially around doors, windows, pipes that penetrate the attic ceiling, and other areas with high potential for heat loss, using caulk, foam sealant, weather-stripping, window film, door sweeps, electrical receptacle gaskets, and so on to reduce infiltration.
  • Protecting pipes from corrosion and freezing.
  • Installing footing drains, foundation waterproofing membranes, interior perimeter drains, sump pump, gutters, downspout extensions, downward-sloping grading, French drains, swales, and other techniques to protect a building from both surface water and ground water.
  • Providing proper ventilation to unconditioned spaces to protect a building from the effects of condensation. See Ventilation issues in houses
  • Installing roofing, building wrap, siding, flashing, skylights or solar tubes and making sure they are in good condition on an existing building.
  • Installing insulation in walls, floors, and ceilings, around ducts and pipes, around water heaters, and near the foundation and sill.
  • Installing storm doors and storm windows.
  • Replacing old drafty doors with tightly sealing, foam-core doors.
  • Replacing older windows with low-energy, double-glazed windows.

The phrase "whole-house weatherization" extends the traditional definition of weatherization to include installation of modern, energy-saving heating and cooling equipment, or repair of old, inefficient equipment (furnaces, boilers, water heaters, programmable thermostats, air conditioners, and so on). The "Whole-House" approach also looks at how the house performs as a system.

US Weatherization Assistance Program

Weatherization has become increasingly high-profile as the cost of home heating has risen. There are programs available to help low income families reduce energy consumption and costs.

The Weatherization Assistance Program (WAP) was created in 1976 to assist low-income families who lacked resources to invest in energy efficiency. WAP is operated in all 50 states and the District of Columbia, and works with Native American tribes. The funds provided by Congress are used to improve the energy efficiency of low-income dwellings using the most advanced technologies and testing protocols available in the housing industry. The energy conservation resulting from the efforts of state and local agencies helps our country reduce its dependency on foreign oil and decrease the cost of energy for families in need, while improving the health and safety of their homes.

The WAP is governed by various federal regulations designed to help manage and account for the resources provided by DOE. WAP funding is derived from annual appropriations from Congress. Each year Senate and House Interior Appropriations committees decide how much will be allocated.

Since the inception of the WAP, over 5.6 million homes have been weatherized with DOE funds. This year, an estimated 93,408 homes will be weatherized with Department of Energy (DOE) funds. An average of 30.5 million MBtu of energy is saved as a result of weatherization. This equates to a 23% reduction in primary heating fuel use. Low-income families will save an average of $358 in reduced first-year energy costs, at current prices. Taken together, for every $1 invested in the Program, Weatherization returns $2.69 in energy and non-energy related benefits.

Many state LIHEAP (Low Income Home Energy Assistance) programs work side by side with WAP to provide both immediate and long term solutions to energy poverty.

See also

  • Building envelope
  • Building indoor environment
  • Central heating
  • HVAC
  • Vapor barrier
  • WikiBooks How-to guide to Weatherization
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Weatherization". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE