My watch list  

Robust and inexpensive catalysts for hydrogen production


© RUB, Marquard

The team from Bochum in the laboratory: Tsvetan Tarnev, Corina Andronescu and Mathias Smialkowski (from the left).

Hydrogen gas is considered a possible future source of energy and can be produced from water using platinum catalysts and electricity. However, alternative catalysts made of cheaper and more readily available materials with equally high efficiency are barely known.

Electrodes without precious metals

There are a number of materials that, like platinum, are able to catalyse the reaction of water into hydrogen. "These include metal chalcogenides such as the mineral pentlandite, which is just as efficient as platinum and is also significantly more stable towards catalyst poisons such as sulphur", explains Ulf-Peter Apfel. Pentlandite consists of iron, nickel and sulphur. Its structure is similar to that of the catalytic centres of hydrogen-producing enzymes found in a variety of sources, including green algae.

A drop with a diameter of only a few hundred nanometres

In the current study, the researchers investigated the hydrogen production rates of artificially prepared crystalline surfaces of the mineral pentlandite in a drop of liquid with a diameter of a few hundred nanometres. They used scanning electrochemical cell microscopy for this purpose.

This enabled them to clarify how the structure and composition of the material influence the electrocatalytic properties of iron-nickel sulphide. Even the smallest changes in the ratio between iron and nickel by varying the synthesis conditions or the ageing of the material considerably changed the activity in the electrochemical hydrogen formation. "With these findings, we can now continue to work and develop strategies to improve many more robust and cheap catalysts", says Ulf-Peter Apfel.

Design principles for electrodes

The researchers also showed that scanning electrochemical cell microscopy makes it possible to link information on the structure, composition and electrochemical activity of the materials in a spatially resolved manner. The method thus makes it possible to design catalysts specifically and to produce highly active materials this way. "In future, this method will therefore play an important role in the search for electrocatalytically active, heterogeneous catalysts", says Wolfgang Schuhmann.

Facts, background information, dossiers
  • electrocatalysis
  • electrocatalysts
  • sulfides
More about Ruhr-Universität Bochum
  • News

    2018 WITec Paper Award for Outstanding Scientific Publications

    Every year WITec, the Raman imaging company, recognizes three peer-reviewed publications that stand out in terms of originality and significance and feature data acquired with a WITec microscope. This year, scientists from universities and institutes in Bochum, Bayreuth and Minneapolis rece ... more

    Creating complex molecules in just a few steps

    Researchers have found a way to convert single bonds between carbon and hydrogen atoms in a chemical molecule into carbon-carbon bonds. This so-called C-H activation is considered a promising strategy for producing complex molecules from simple starting materials in just a few steps. The ma ... more

    Fixation of powder catalysts on electrodes

    Chemists at Ruhr-Universität Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces. Currently, the high physical stress induced on catalyst films by gas evolving reactions hampers the application of powder based catalysts. The developed technique is potent ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE