My watch list
my.chemeurope.com  
Login  

Porous salts for fuel cells

Organic salts with high proton conductivity

23-Apr-2018

Scientists have developed a new class of crystalline porous organic salts with high proton conductivity for applications such as proton-exchange membranes for fuel cells. Polar channels that contain water play a critical role in proton conduction. At about 60 °C and high humidity, their proton conductivity is one of the best yet found in a porous material.

Porous organic materials are potentially useful for many applications, including catalytic systems, separation processes, and gas storage. Although these framework-like structures vary greatly, they have one thing in common: their components are connected through covalent bonds. Porous organic salts, on the other hand, are a new class of materials with components held together by ionic bonds, the attractive forces between positive and negatively charged ions. They are challenging to produce because their pores usually collapse; the ionic bonds of previously known organic salts are not strong enough to stabilize a porous structure.

Researchers working with Teng Ben at Jilin University (Changchun, China) have now successfully combined organic bases and acids to produce salts with very strong bonds and defined crystalline structures that form stable pore systems. These highly porous solids have the highest inner surface area ever found in an organic salt. The scientists demonstrated a significant correlation between the strength of the ionic bonds and the stability of the pore structure.

The pores in the salts form one-dimensional channels and can hold water. The water molecules are bound to each other and to the charged groups through hydrogen bonding. These aspects give the salts their unusually high proton conductivity. Materials with high proton conductivity have become the focus of attention because they are good electrolytes for fuel cells. In a fuel cell, two half reactions of a chemical reaction occur while physically separated. The most popular version uses the reaction oxygen and hydrogen to form water. In this case, the two cells must exchange protons (positively charged hydrogen atoms) through an electrolyte--usually through a proton-conducting polymer membrane. Scientists have been searching for more efficient, robust electrolytes. These new salts may be candidates. They are very stable at higher temperatures and their proton conductivity increases as the temperature rises.

In conventional polymer membranes, proton transport occurs through water-containing channels through which the protons within the network are transferred from one molecule to the next through hydrogen bonded water molecules. In the salts, the transport mechanism is different. Calculations indicate that the protons are sent through the channels by "courier": A water molecule binds a proton and diffuses through the channel, releasing the proton on the other side.

Facts, background information, dossiers
  • salts
  • organic salts
  • hydrogen bonds
  • Jilin University
  • porosity
  • proton exchange membranes
  • proton conductivity
More about Jilin University
  • News

    Radical approach for brighter LEDs

    Scientists have discovered that semiconducting molecules with unpaired electrons, termed 'radicals' can be used to fabricate very efficient organic-light-emitting diodes (OLEDs), exploiting their quantum mechanical 'spin' property to overcome efficiency limitations for traditional, non-radi ... more

    MOF-polymer composite membranes to enhance proton conductivity in fuel cells

    Nafion (a perfluorosulfonic acid membrane) is widely used in fuel cells to conduct protons, but Nafion membranes are prone to rapid dehydration at low humidity, which results in a loss of conductivity. To overcome this problem, scientists in China have made a metal-organic framework (MOF) co ... more

    Zeolites for efficient oil-water separation

    Scientists in China have used zeolite-coated mesh films for gravity-driven oil-water separation. The superhydrophilicity and underwater superoleophobicity of the zeolite’s surface allow the highly efficient separation of various oils. Unlike other oil-water separation membranes based on sup ... more

More about Wiley-VCH
  • News

    Chemical hydrogen storage system

    Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems. Scientists at the Weizmann Institute of Science, Israel, have now developed a chemical storage system based on simple and abundant ... more

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

    A Successful Coupling

    Coupled oxygen transfer and electron transfer reactions that use cofactors are enzymatic reactions of crucial significance to all lifeforms from bacteria to vertebrates. In the European Journal of Inorganic Chemistry, scientists have introduced a model for the enzyme sulfite oxidase. It is ... more

  • Companies

    Wiley-VCH Verlag GmbH & Co. KGaA

    Wiley-VCH publishes monographs, textbooks, major references works and journals in print or online. Wiley-VCH can look back on over 80 years of publishing in chemistry, materials sciences, physics and the life sciences. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE