My watch list  

Wood to Supercapacitors

Electrode materials from ultrathin carbon nanofiber aerogels derived from cellulose


© Wiley-VCH

Carbon aerogels are ultralight, conductive materials, which are extensively investigated for applications in supercapacitor electrodes in electrical cars and cell phones. Chinese scientists have now found a way to make these electrodes sustainably. The aerogels can be obtained directly from cellulose nanofibrils, the abundant cell-wall material in wood, finds the study.

Supercapacitors are capacitors that can take up and release a very large amount of energy in a very short time. Key requirements for supercapacitor electrodes are a large surface area and conductivity, combined with a simple production method. Another growing issue in supercapacitor production—mainly for smartphone and electric car technologies—is sustainability. However, sustainable and economical production of carbon aerogels as supercapacitor electrode materials is possible, propose Shu-Hong Yu and colleagues from the University of Science and Technology of China, Hefei, China.

Carbon aerogels are ultralight conductive materials with a very large surface area. They can be prepared by two production routes: the first and cheapest starts from mostly phenolic components and produces aerogels with improvable conductivity, while the second route is based on graphene- and carbon-nanotube precursors. The latter method delivers high-performance aerogels but is expensive and non-environmentally friendly. In their search for different precursors, Yu and colleagues have found an abundant, far less expensive, and sustainable source: wood pulp.

Well, not really wood pulp, but its major ingredient, nanocellulose. Plant cell walls are stabilized by fibrous nanocellulose, and this extractable material has very recently stimulated substantial research and technological development. It forms a highly porous, but very stable transparent network, and, with the help of a recent technique—oxidation with a radical scavenger called TEMPO—it forms a microporous hydrogel of highly oriented cellulose nanofibrils with a uniform width and length. As organic aerogels are produced from hydrogels by drying and pyrolysis, the authors attempted pyrolysis of supercritically or freeze-dried nanofibrillated cellulose hydrogel.

As it turns out, the method was not as straightforward as expected because ice crystal formation and insufficient dehydration hampered carbonization, according to the authors. Here, a trick helped. The scientists pyrolyzed the dried gel in the presence of the organic acid catalyst para-toluenesulfonic acid. The catalyst lowered the decomposition temperature and yielded a “mechanically stable and porous three-dimensional nanofibrous network” featuring a “large specific surface area and high electrical conductivity,” the authors reported.

The authors also demonstrated that their wood-derived carbon aerogel worked well as a binder-free electrode for supercapacitor applications. The material displayed electrochemical properties comparable to commercial electrodes. The method is an interesting and innovative way in which to fabricate sustainable materials suitable for use in high-performance electronic devices.

Original publication:

Si‐Cheng Li, Bi‐Cheng Hu, Dr. Yan‐Wei Ding, Prof. Hai‐Wei Liang, Chao Li, Dr. Zi‐You Yu, Dr. Zhen‐Yu Wu, Prof. Wen‐Shuai Chen, Prof. Shu‐Hong Yu; "Wood‐Derived Ultrathin Carbon Nanofiber Aerogels"; Angew. Chem.; 2018

Si‐Cheng Li, Bi‐Cheng Hu, Dr. Yan‐Wei Ding, Prof. Hai‐Wei Liang, Chao Li, Dr. Zi‐You Yu, Dr. Zhen‐Yu Wu, Prof. Wen‐Shuai Chen, Prof. Shu‐Hong Yu; "Wood‐Derived Ultrathin Carbon Nanofiber Aerogels"; Angew. Chem. Int Ed.; 2018

Facts, background information, dossiers
More about University of Science and Technology
  • News

    Materials that climb up vibrating tubes

    Scientists have discovered a phenomenon whereby granular material climbs up a vertically vibrating tube that is partially inserted in a granular silo. The final height to which the material climbs is found to depend on the strength of the vibrations and the depth to which the tube is insert ... more

More about Wiley-VCH
  • News

    Organic Crystals Twist, Bend, and Heal

    Crystals are brittle and inelastic? A novel class of smart, bendable crystalline organic materials has challenged this view. Now, scientists have engineered a molecular soft cocrystalline structure that bends and twists reversibly and without disintegration when stimulated by high temperatu ... more

    Anthracenes orbiting fullerenes

    Saturn is the second largest planet in our solar system and has a characteristic ring. Japanese researchers have now synthesized a molecular “nano-Saturn”. As the scientists report, it consists of a spherical C60 fullerene as the planet and a flat macrocycle made of six anthracene units as ... more

    Shine bright like a nanoaggregate

    Chinese scientists have turned copper–iodine cluster molecules into aggregated, highly luminescent nanostructures for use in light-emitting diodes (LEDs). The solid-state assemblies made of complexes of the copper–iodine cluster with phosphor–organic compounds as ligands are easily prepared ... more

  • Companies

    Wiley-VCH Verlag GmbH & Co. KGaA

    Wiley-VCH publishes monographs, textbooks, major references works and journals in print or online. Wiley-VCH can look back on over 80 years of publishing in chemistry, materials sciences, physics and the life sciences. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE