Temperature-controlled fiber-optic light source with liquid core

22-Jun-2018 - Germany

In a recent publication in the journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Leibniz-IPHT

Schematic representation of the temperature-controlled supercontinuum generation.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting from the unique characteristics of the carbondisulfide-filled fiber core. Now they succeeded to control light generation and the propagation of the wave packages via temperature and pressure tuning along the optical fiber. In this way, they realised near and mid-infrared supercontinuum light sources with flexibly adjustable spectral band width for applications in medical imaging, measurement technology, and spectroscopy.

“Our computer simulations and experiments showed that the wavelength of the initial solitons remains constant over the whole temperature range. The dispersive wave packages resulting from soliton fission, indeed exhibit spectral shifts depending on the ambient temperature. A temperature change of only 13 Kelvin allows us to adjust the band width of radiation over several hundred nanometers“, explains Mario Chemnitz, scientist at Leibniz-IPHT and first author of the publication.

Original publication

Other news from the department science

Most read news

More news from our other portals

Discover the latest developments in battery technology!