My watch list
my.chemeurope.com  
Login  

A burst of ”synchronous” light

Sandwich structure of nanocrystals as quantum light source

09-Nov-2018

Empa

Superlattices under the microscope (white light illumination).

Excited photo-emitters can cooperate and radiate simultaneously, a phenomenon called superfluorescence. Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. This discovery could enable future developments in LED lighting, quantum sensing, quantum communication and future quantum computing.

Some materials spontaneously emit light if they are excited by an external source, for instance a laser. This phenomenon is known as fluorescence. However, in several gases and quantum systems a much stronger emission of light can occur, when the emitters within an ensemble spontaneously synchronize their quantum mechanical phase with each other and act together when excited. In this way, the resulting light output can be much more intense than the sum of the individual emitters, leading to an ultrafast and bright emission of light – superfluorescence. It only occurs, however, when those emitters fulfill stringent requirements, such as having the same emission energy, high coupling strength to the light field and a long coherence time. As such, they are strongly interacting with each other but at the same time are not easily disturbed by their environment. This has not been possible up to now using technologically relevant materials. Colloidal quantum dots could just be the ticket; they are a proven, commercially appealing solution already employed in the most advanced LCD television displays – and they fulfill all the requirements.

Researchers at Empa and ETH Zurich, led by Maksym Kovalenko, together with colleagues from IBM Research Zurich, have now shown that the most recent generation of quantum dots made of lead halide perovskites offer an elegant and practically convenient path to superfluorescence on-demand. For this, the researchers arranged perovskite quantum dots into a three-dimensional superlattice, which enables the coherent collective emission of photons – thus creating superfluorescence. This provides the basis for sources of entangled multi-photon states, a missing key resource for quantum sensing, quantum imaging and photonic quantum computing.

“Birds of a feather flock together”

A coherent coupling among quantum dots requires, however, that they all have the same size, shape and composition because “birds of a feather flock together” in the quantum universe, too. “Such long-range ordered superlattices could only be obtained from a highly monodisperse solution of quantum dots, the synthesis of which had been carefully optimized over the last few years,” said Maryna Bodnarchuk, a senior scientist at Empa. With such ”uniform” quantum dots of various sizes, the research team could then form superlattices by properly controlling the solvent evaporation.

The final proof of superfluorescence came from optical experiments performed at temperatures of around minus 267 degrees Celsius. The researchers discovered that photons were emitted simultaneously in a bright burst: “This was our ‘Eureka! ‘ moment. The moment we realized that this was a novel quantum light source,” said Gabriele Rainó from ETH Zurich and Empa who was part of the team that carried out the optical experiments.

The researchers consider these experiments as a starting point to further exploit collective quantum phenomena with this unique class of material. “As the properties of the ensemble can be boosted compared to just the sum of its parts, one can go way beyond engineering the individual quantum dots,” added Michael Becker from ETH Zurich and IBM Research. The controlled generation of superfluorescence and the corresponding quantum light could open new possibilities in LED lighting, quantum sensing, quantum-encrypted communication and future quantum computing.

Facts, background information, dossiers
  • perovskites
  • light
  • superlattices
More about Empa
  • News

    Solid state batteries for tomorrow's electric cars

    As part of a strategic international cooperation program of the Fraunhofer-Gesellschaft, Empa in Dübendorf (CH) and the Fraunhofer Institute for Silicate Research ISC in Würzburg (D) launched a three-year joint research project at the beginning of January to create the basis for a produc-ti ... more

    How safe is graphene?

    Graphene is considered one of the most interesting and versatile materials of our time. The application possibilities inspire both research and industry. But are products containing graphene also safe for humans and the environment? A comprehensive review, developed as part of the European ... more

    Fireproofing made of recycled paper

    Scientists at Empa teamed up with isofloc AG to develop an insulating material made of recycled paper. It is ideal for prefabricated wooden elements and even multistory timber houses, and protects the construction against fire. What's more: The additive it contains is harmless to humans, an ... more

  • Videos

    A water-based, rechargeable battery

    First step to produce a cheap aquous electrolyte for powerful rechargeable batteries: Seven grams of sodium FSI (precise name: sodium bis(fluorosulfonyl)imide) and one gram of water produce a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other ... more

More about ETH Zürich
  • News

    Ocean sink for man-made CO2 measured

    An international research project led by scientists from ETH Zurich has determined the amount of man-made CO2 emissions taken up by the ocean between 1994 and 2007. Not all of the CO2 generated during the combustion of fossil fuels remains in the atmosphere and contributes to global warming ... more

    Nanotechnology and sunlight clear the way for better visibility

    A new coating developed by ETH researchers prevents fogging on transparent surfaces. Rather than using electricity, the coating relies on sunlight to heat the surface. Anyone who skis, wears glasses, uses a camera or drives a car is familiar with the problem: if you come into a humid enviro ... more

    Immunising quantum computers against errors

    Researchers at ETH Zurich have used trapped calcium ions to demonstrate a new method for making quantum computers immune to errors. To do so, they created a periodic oscillatory state of an ion that circumvents the usual limits to measurement accuracy. When building a quantum computer, one ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE