My watch list
my.chemeurope.com  
Login  

Rocket fuel that's cleaner, safer and still full of energy

09-Apr-2019

WikiImages, pixabay.com, CC0

Symbolic image

Research published in Science Advances shows that it may be possible to create rocket fuel that is much cleaner and safer than the hypergolic fuels that are commonly used today. And still just as effective. The new fuels use simple chemical "triggers" to unlock the energy of one of the hottest new materials, a class of porous solids known as metal-organic frameworks, or MOFs. MOFs are made up of clusters of metal ions and an organic molecule called a linker.

Satellites and space stations that remain in orbit for a considerable amount of time rely on hypergols, fuels that are so energetic they will immediately ignite in the presence of an oxidizer (since there is no oxygen to support combustion beyond the Earth's atmosphere). The hypergolic fuels that are currently mainly in use depend on hydrazine, a highly toxic and dangerously unstable chemical compound made up of a combination of nitrogen and hydrogen atoms. Hydrazine-based fuels are so carcinogenic that people who work with it need to get suited up as though they were preparing for space travel themselves. Despite precautions, around 12,000 tons of hydrazine fuels end up being released into the atmosphere every year by the aerospace industry.

"This is a new, cleaner approach to making highly combustible fuels, that are not only significantly safer than those currently in use, but they also respond or combust very quickly, which is an essential quality in rocket fuel," says Tomislav Friščić. He is a professor in the Chemistry Department at McGill, and co-senior author on the paper along with former McGill researcher Robin D. Rogers.

"Although we are still in the early stages of working with these materials in the lab, these results open up the possibility of developing a class of new, clean and highly tunable hypergolic fuels for the aerospace industry," says the first author, Hatem Titi, a post-doctoral fellow who works in Friščić's lab.

Friščić is interested in commercializing this technology, and will work with McGill and Acsynam, an existing spin-off company from his laboratory, to make this happen.

Facts, background information, dossiers
More about McGill University
  • News

    New 'chemical noses' to rid the environment of industrial pollutants

    Scientists from five European countries have joined forces to develop next-generation 'chemical noses' to remove industrial pollutants from the environment. The European Commission allocated 2.9 million euros to finance the Horizon2020 FET-OPEN project INITIO that will bring together resear ... more

    Cracking eggshell nanostructure

    How is it that fertilized chicken eggs manage to resist fracture from the outside, while at the same time, are weak enough to break from the inside during chick hatching? It's all in the eggshell's nanostructure, according to a new study led by McGill University scientists. The findings cou ... more

    Stiff fibres spun from slime

    Nature is an excellent teacher – even for material scientists. Researchers, including scientists at the Max Planck Institute of Colloids and Interfaces, have now observed a remarkable mechanism by which polymer materials are formed. In order to capture prey, velvet worms shoot out a sticky ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE