My watch list
my.chemeurope.com  
Login  

Neutrino detector starts measurement

New facility in France to measure fundamental properties of neutrinos

31-Jan-2011

© Double-Chooz-Kollaboration

Overview of the Double Chooz experiment with the nuclear power plant and the two detectors

The Double Chooz collaboration recently completed its neutrino detector which will see anti-neutrinos coming from the Chooz nuclear power plant in the French Ardennes. The experiment is now ready to start collecting data in order to measure fundamental neutrino properties with important consequences for particle and astro-particle physics.

Neutrinos are electrically neutral elementary particles, three of a kind plus their antiparticles. Though already postulated in 1930 their first experimental observation was made in 1956. Because of their weak interaction with other particles, matter is almost completely transparent to neutrinos and large sensitive detectors are needed to capture them.

Neutrino oscillations were a major discovery in the late 1990s with the corresponding experiments being included in the 2002 Nobel Prize. Oscillations describe in-flight transformations of different neutrino species into each other and the observation of this effect implies that neutrinos do have mass. The oscillations depend on three mixing parameters, of which two are large and have already been measured. The third one is called theta13 and is known to be smaller with an upper limit coming from a previous experiment at Chooz. The new Double Chooz detector is the first of a new generation of reactor neutrino experiments with the aim of measuring this fundamental parameter in neutrino physics which is a key area of particle physics research. The results will also have important consequences for the feasibility of future neutrino facilities which will aim for even more precise measurements.

Double Chooz consists of two identical detectors. The first one, at a distance of about 1km from the reactor cores, has now been filled and started to collect data. The number of neutrinos measured compared to the expected flux from the reactors will allow considerably improvement in the sensitivity for theta13 already in 2011. The second detector, located at a distance of 400 metres, will start operating in 2012. At this distance no significant transformation into another neutrino species is expected. By comparing the results from both detectors, theta13 can be determined with even higher precision.

Both detectors use an organic liquid scintillator, which was developed specifically for this experiment. The neutrino target in the core of the detector consists of 10 cubic metres of Gadolinium doped scintillator which can be used to tag neutrons from inverse beta decays which are induced by anti-neutrinos emitted by the reactors. The target is surrounded by three layers of other liquids in order to protect against other particles and to dampen environmental radioactivity. These liquids are contained in very thin vessels so as to minimize inactive volumes inside the detector. The target is observed by 390 immersed photomultipliers which convert the interactions into electrical signals. These signals are processed in a data acquisition system which can collect data over the next five years. The new detectors will ensure that neutrino physics will stay one the most fruitful areas of particle physics, as it has been for the past 50 years.

An essential contribution to the project was the development of the gadolinium-doped liquid scintillator by the researchers at the Max Planck Institute for Nuclear Physics in Heidelberg. Their task was to find, test, produce and purify a gadolinium compound which is solvable in an organic liquid and chemically stable for many years. In collaboration with their colleagues from Japan they checked the photomultipliers in a specially built test-bed. These central contributions will also play a crucial role for the interpretation and data analysis. Universities and research institutes from Brazil, England, France, Germany, Japan, Russia, Spain and USA comprise the Double Chooz collaboration.

More about MPI für Kernphysik
  • News

    The proton precisely weighted

    What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the ... more

    Watching the buildup of quantum superpositions

    It is definitely the most famous experiment in quantum physics: in the double slit experiment, a particle is fired onto a plate with two parallel slits, so there are two different paths on which the particle can reach the detector on the other side. Due to its quantum properties, the partic ... more

    Molecular selfie reveals how a chemical bond breaks

    Imagine what it would be like to watch how the individual atoms of molecules rearrange during a chemical reaction to form a new substance, or to see the compounds of DNA move, rearrange and replicate. Such capability would give unprecedented insight to understand and potentially control the ... more

More about Max-Planck-Gesellschaft
  • News

    Reducing manure and fertilizers decreases atmospheric fine particles

    Fine particulates have numerous sources – not only traffic, which is currently under particular scrutiny. Reducing agricultural emissions could also considerably reduce the particulate levels that are hazardous to health, concludes a study by researchers at the Max Planck Institute for Chem ... more

    Stiff fibres spun from slime

    Nature is an excellent teacher – even for material scientists. Researchers, including scientists at the Max Planck Institute of Colloids and Interfaces, have now observed a remarkable mechanism by which polymer materials are formed. In order to capture prey, velvet worms shoot out a sticky ... more

    Ultrafast snapshots of relaxing electrons in solids

    Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setti ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE