My watch list
my.chemeurope.com  
Login  

Vitamins doing gymnastics: Scientists capture first full image of vitamin B12 in action

Work by University of Michigan and MIT team yields new understanding of crucial reaction in the body and in CO2-scrubbing bacteria

28-03-2012: You see it listed on the side of your cereal box and your multivitamin bottle. It's vitamin B12, part of a nutritious diet like all those other vitamins and minerals. But when it gets inside your body, new research suggests, B12 turns into a gymnast.

In a paper published in Nature, scientists from the University of Michigan Health System and the Massachusetts Institute of Technology report they have created the first full 3-D images of B12 and its partner molecules twisting and contorting as part of a crucial reaction called methyltransfer.

That reaction is vital both in the cells of the human body and, in a slightly different way, in the cells of bacteria that consume carbon dioxide and carbon monoxide. That includes bacteria that live in the guts of humans, cows and other animals, and help with digestion. The new research was done using B12 complexes from another type of carbon dioxide-munching bacteria found in the murky bottoms of ponds.

The 3-D images produced by the team show for the first time the intricate molecular juggling needed for B12 to serve its biologically essential function. They reveal a multi-stage process involving what the researchers call an elaborate protein framework – a surprisingly complicated mechanism for such a critical reaction.

U-M Medical School professor and co-author Stephen Ragsdale, Ph.D., notes that this transfer reaction is important to understand because of its importance to human health. It also has potential implications for the development of new fuels that might become alternative renewable energy sources.

"Without this transfer of single carbon units involving B12, and its partner B9 (otherwise known as folic acid), heart disease and birth defects might be far more common," explains Ragsdale, a professor of biological chemistry. "Similarly, the bacteria that rely on this reaction would be unable to consume carbon dioxide or carbon monoxide to stay alive – and to remove gas from our guts or our atmosphere. So it's important on many levels."

In such bacteria, called anaerobes, the reaction is part of a larger process called the Wood-Ljungdahl pathway. It's what enables the organisms to live off of carbon monoxide, a gas that is toxic to other living things, and carbon dioxide, which is a greenhouse gas directly linked to climate change. Ragsdale notes that industry is currently looking at harnessing the Wood-Ljungdahl pathway to help generate liquid fuels and chemicals.

In the images created by the team, the scientists show how the complex of molecules contorts into multiple conformations - first to activate, then to protect, and then to perform catalysis on the B12 molecule. They had isolated the complex from Moorella thermoacetica bacteria, which are used as models for studying this type of reaction.

The images were produced by aiming intense beams of X-rays at crystallized forms of the protein complex and painstakingly determining the position of every atom inside.

"This paper provides an understanding of the remarkable conformational movements that occur during one of the key steps in this microbial process, the step that involves the generation of the first in a series of organometallic intermediates that lead to the production of the key metabolic intermediate, acetyl-CoA," the authors note.

Senior author Catherine L. Drennan from MIT and the Howard Hughes Medical Institute, who received her Ph.D. at the U-M Medical School, adds, "We expected that this methyl-handoff between B vitamins must involve some type of conformational change, but the dramatic rearrangements that we have observed surprised even us."

Facts, background information, dossiers
More about University of Michigan
  • News

    Pinwheel 'living' crystals and the origin of life

    Simply making nanoparticles spin coaxes them to arrange themselves into what University of Michigan researchers call 'living rotating crystals' that could serve as a nanopump. They may also, incidentally, shed light on the origin of life itself. The researchers refer to the crystals as 'liv ... more

    Microparticles show molecules their way

    A team of researchers of Karlsruhe Institute of Technology (KIT) and the University of Michigan/USA has produced novel microparticles, whose surface consists of three chemically different segments. These segments can be provided with different (bio-) molecules. Thanks to the specific spatia ... more

    Chemical chaperones have helped proteins for billions of years

    An ancient chemical, present for billions of years, appears to have helped proteins function properly since time immemorial. Proteins are the body's workhorses, and like horses they often work in teams. There exists a modern day team of multiple chaperone proteins that help other proteins f ... more

More about MIT
  • News

    Tiny particles could help verify goods

    Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products — which include electronics, automotive and aircraft parts, pharmaceuticals, and food — can pose safety risks and cost governments and private compani ... more

    How electrodes charge and discharge

    The electrochemical reactions inside the porous electrodes of batteries and fuel cells have been described by theorists, but never measured directly. Now, a team at MIT has figured out a way to measure the fundamental charge transfer rate — finding some significant surprises. The study foun ... more

    Strain can alter materials' properties

    In the ongoing search for new materials for fuel cells, batteries, photovoltaics, separation membranes, and electronic devices, one newer approach involves applying and managing stresses within known materials to give them dramatically different properties. This development has been very ex ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE