My watch list
my.chemeurope.com  
Login  

Scotch tape finds new use as grasping 'smart material'

26-Nov-2012

Foto: M. Ochoa, Purdue University

The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry.

Scotch tape, a versatile household staple and a mainstay of holiday gift-wrapping, may have a new scientific application as a shape-changing "smart material."

Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

The innovation could be used to collect water samples for environmental testing, saidBabak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

The Scotch tape - made from a cellulose-acetate sheet and an adhesive  - is uniquely suited for the purpose.

"It can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions," he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

"So, when one side absorbs water it expands, the other side stays the same, causing it to curl," Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.

"Say you were sampling for certain bacteria in water," Ziaie said. "You could drop a bunch of these and then come the next day and collect them.”

Findings will be detailed in a presentation during a meeting of the Materials Research Society in Boston from Sunday (Nov. 25) to Nov. 30. Experiments at Purdue'sBirck Nanotechnology Centerwere conducted by Ochoa, doctoral student Girish Chitnis and Ziaie.

The grippers close underwater within minutes and can sample one-tenth of a milliliter of liquid.

The materials might be "functionalized" so that they attract specific biochemicals or bacteria in water.

"Although brittle when dry, the material becomes flexible when immersed in water and is restored to its original shape upon drying, a crucial requirement for an actuator material because you can use it over and over," Ziaie said. "Various microstructures can be carved out of the tape by using laser machining. This fabrication method offers the capabilities of rapid prototyping and batch processing without the need for complex clean-room processes."

Facts, background information, dossiers
More about Purdue University
  • News

    Chemical origami yields new plant compounds with wide potential

    Plants produce countless kinds of compounds, also known as natural products, that the plants manufacture using the enzymes predetermined by their genetic code. Many of these natural products are very useful as antibiotics, anti-cancer drugs or vitamins, among myriad other applications. Many ... more

    Weak atomic bond, theorized 14 years ago, observed for first time

    A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. Rydberg molecules are formed when an electron is kicked far from an atom's nucleus. Chris Greene, Purdue's Albert Overh ... more

    Hybrid system designed to harvest 'full spectrum' of solar energy

    A new concept could bring highly efficient solar power by combining three types of technologies that convert different parts of the light spectrum and also store energy for use after sundown.   Combining the technologies could make it possible to harness and store far more of the spectrum o ... more

  • Videos

    Hybrid Design for Efficient Solar Power

    A new concept could bring highly efficient solar power by combining three types of technologies that convert different parts of the light spectrum and also store energy for use after sundown. more

    Levitating Nanodiamond Research

    Researchers have demonstrated how to control the “electron spin” of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE