My watch list  

Nanoparticles digging the world’s smallest tunnels


The world’s smallest tunnels have a width of a few nanometers only. Researchers from Karlsruhe Institute of Technology (KIT) and Rice University, USA, have dug such tunnels into graphite samples. This will allow structuring of the interior of materials through self-organization in the nanometer range and tailoring of nanoporous graphite for applications in medicine and battery technology. Results are now presented in Nature Communications.

The tunnels are manufactured applying nickel nanoparticles to graphite which then is heated in the presence of hydrogen gas. The surface of the metal particles, that measure a few nanometers only, serves as a catalyst removing the carbon atoms of the graphite and converting them by means of hydrogen into the gas methane. Through capillary forces, the nickel particle is drawn into the “hole” that forms and bores through the material. The size of the tunnels obtained in the experiments was in the range of 1 to 50 nanometers, which about corresponds to one thousandth of the diameter of a human hair.

To furnish proof of the real existence of these graphite tunnels, the researchers have made use of scanning electron and scanning tunneling microscopy. “Microscopes, in fact, image only the upper layers of the sample,” the principal authors of the study, Maya Lukas and Velimir Meded from KIT’s Institute of Nanotechnology, explain. “The tunnels below these upper layers, however, leave atomic structures on the surface whose courses can be traced and which can be assigned to the nanotunnels by means of the very detailed scanning tunneling microscopy images and based on computerized simulations.” In addition, the depth of the tunnels was determined precisely by means of a series of images taken by a scanning electron microscope from different perspectives.

Porous graphite is used, for example, in the electrodes of lithium ion batteries. The charge time could be reduced using materials with appropriate pore sizes. In medicine, porous graphite could serve as a carrier of drugs to be released over longer periods of time. Replacing graphite by nonconductive materials, e.g. boron nitride,  with atomic structures similar to that of graphite,  the tunnels could serve as basic structures for nanoelectronic components such as novel sensors or solar cells.

Facts, background information, dossiers
  • Rice University
  • Karlsruher Institut…
More about KIT
  • News

    Cloud Formation: How Feldspar Acts as Ice Nucleus

    In the atmosphere, feldspar particles act as ice nuclei that make ice crystals grow in clouds and enable precipitation. The reason was found by researchers of Karlsruhe Institute of Technology (KIT) and University College London (UCL) with the help of electron microscopy observations and mo ... more

    Light to design precision polymers

    Chemists of Karlsruhe Institute of Technology (KIT) have succeeded in specifically controlling the setup of precision polymers by light-induced chemical reactions. The new method allows for the precise, planned arrangement of the chain links, i.e. monomers, along polymer chains of standard ... more

    Record for Perovskite/CIGS Tandem Solar Module

    Thin-film technologies can dramatically reduce the cost of next-generation solar modules. Whereas their production cost is low, it is in particular the combination of complementary absorber materials in a tandem solar module that increases the power conversion efficiency. At the PSCO intern ... more

More about Rice University
  • News

    For chemicals, mega is out and bio is in

    Ramon Gonzalez sees flares burning methane from the stacks above Houston’s refineries and thinks, “What a waste.” He believes that methane represents an opportunity for biomanufacturing that should not be missed. The Rice University professor and director of its new Advanced Biomanufacturin ... more

    Nano-chimneys can cool circuits

    A few nanoscale adjustments may be all that is required to make graphene-nanotube junctions excel at transferring heat, according to Rice University scientists. The Rice lab of theoretical physicist Boris Yakobson found that putting a cone-like "chimney" between the graphene and nanotube al ... more

    Ways to turn cement's weakness to strength

    Concrete isn't thought of as a plastic, but plasticity at small scales boosts concrete's utility as the world's most-used material by letting it constantly adjust to stress, decades and sometimes even centuries after hardening. Rice University researchers are a step closer to understanding ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE