My watch list  

Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic


Researchers from the National Institute of Standards and Technology (NIST) and Kansas State University have demonstrated a spray-on mixture of carbon nanotubes and ceramic that has unprecedented ability to resist damage while absorbing laser light.

Coatings that absorb as much of the energy of high-powered lasers as possible without breaking down are essential for optical power detectors that measure the output of such lasers, which are used, for example, in military equipment for defusing unexploded mines. The new material improves on NIST's earlier version of a spray-on nanotube coating for optical power detectors** and has already attracted industry interest.

"It really is remarkable material," NIST co-author John Lehman says. "It's a way to make super-nanotubes. It has the optical, thermal and electrical properties of nanotubes with the robustness of the high-temperature ceramic."

The composite was developed by Kansas State. NIST researchers suggested using toluene to uniformly coat individual nanotubes with a ceramic shell. They also performed damage studies showing how well the composite tolerates exposure to laser light.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have coated optical detectors with nanotubes because of their unusual combination of desirable properties, including intense black color for maximum light absorption.

The new composite consists of multiwall carbon nanotubes and a ceramic made of silicon, boron, carbon and nitrogen. Boron boosts the temperature at which the material breaks down. The nanotubes were dispersed in toluene, to which a clear liquid polymer containing boron was added drop by drop, and the mixture was heated to 1,100 degrees C. The resulting composite was then crushed into a fine powder, dispersed in toluene, and sprayed in a thin coat on copper surfaces. Researchers baked the test specimens and then exposed them to a far-infrared laser beam of the type used to cut hard materials.

Analysis revealed that the coating absorbed 97.5 percent of the light and tolerated 15 kilowatts of laser power per square centimeter for 10 seconds. This is about 50 percent higher damage tolerance than other research groups have reported for similar coatings—such as nanotubes alone and carbon paint—tested with the same wavelength of light, according to the paper. The nanotubes and graphene-like carbon absorb light uniformly and transmit heat well, while the oxidation-resistant ceramic boosts damage resistance. The spray-on material also adheres well to the copper surface. As an added bonus, the composite can be produced easily in large quantities.

After light exposure, the coatings were analyzed using several different techniques. Electron microscopy revealed no major destruction such as burning or deformation. Other tests showed the coating to be adaptable, with the ceramic shell partially oxidizing into a stable layer of silicon dioxide (quartz).

Original publication:

R. Bhandavat, A. Feldman, C. Cromer, J. Lehman and G. Singh, Very high laser-damage threshold of polymer-derived Si(B)CNCarbon nanotube composite coatings. ACS Applied Materials & Interfaces. ASAP Publication Date March 19. , 2013

More about National Institute of Standards and Technology
  • News

    It's a beauty: JILA's quantum crystal is now more valuable

    Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets and other, more exotic materials. The crystal is actually a gas of pa ... more

    Scientists float new approach to creating computer memory

    What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it stores. Now, thanks to a research team including scientists from the N ... more

    Twisting neutrons

    It's easy to contemplate the wave nature of light in common experience. White light passing through a prism spreads out into constituent colors; it diffracts from atmospheric moisture into a rainbow; light passing across a sharp edge or a diffraction grating creates an interference pattern. ... more

More about Kansas State University
  • News

    New surfaces delay ice formation

    If you've ever waited on an airport runway for your plane to be de-iced, had to remove all your food so the freezer could defrost, or arrived late to work because you had to scrape the sheet of ice off your car windshield, you know that ice can cause major headaches. "People intuitively kno ... more

    When is a molecule a molecule?

    Using ultra-short X-ray flashes, an international team of researchers watched electrons jumping between the fragments of exploding molecules. The study reveals up to what distance a charge transfer between the two molecular fragments can occur, marking the limit of the molecular regime. The ... more

    Researchers trap moths with plant-produced sex pheromone

    A collaborative experiment involving a Kansas State University biochemist may mark the beginning of an effective, environmentally friendly plant-based method of insect control. Timothy Durrett, assistant professor of biochemistry and molecular biophysics, was part of the collaboration that ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE