My watch list
my.chemeurope.com  
Login  

In the wake of high-profile battery fires, a safer approach emerges

16-May-2014

As news reports of lithium-ion battery (LIB) fires in Boeing Dreamliner planes and Tesla electric cars remind us, these batteries — which are in everyday portable devices, like tablets and smartphones — have their downsides. Now, scientists have designed a safer kind of lithium battery component that is far less likely to catch fire and still promises effective performance. They report their approach in the Journal of the American Chemical Society.

Lynden Archer, Geoffrey Coates and colleagues at Cornell University explain that the danger of LIBs originates with their electrolytes, the substance that allows ions to flow between the electrodes of the battery. The electrolyte usually contains a flammable liquid. To minimize this fire hazard, some researchers are developing more stable, solid electrolytes. But although solid electrolytes are less likely to fuel a fire, their ability to transport ions has fallen short, especially at room temperature. Coates's team set out to tackle both issues and come up with a safer, high-performance battery component, while Archer's team studied the electrochemical characteristics of the materials.

The team's efforts have led to a new family of solid polymer electrolytes that is both good at conducting lithium ions at room temperature and minimizing the risk of fire. Not only are these materials safer than their liquid counterparts in LIBs, but they could also be used in high-energy lithium-metal batteries, such as promising lithium-sulfur and lithium-air batteries.

Facts, background information, dossiers
More about American Chemical Society
More about Cornell University
  • News

    Engineering team images tiny quasicrystals as they form

    When Israeli scientist Daniel Shechtman first saw a quasicrystal through his microscope in 1982, he reportedly thought to himself, "Eyn chaya kazo" -- Hebrew for, "There can be no such creature." But there is, and the quasicrystal has become a subject of much research in the 35 years since ... more

    Energy-efficient accelerator was 50 years in the making

    With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years a ... more

    A fresh role for nitric oxide

    Cornell University chemists have uncovered a fresh role for nitric oxide that could send biochemical textbooks back for revision. They have identified a critical step in the nitrification process, which is partly responsible for agricultural emissions of harmful nitrous oxide and its chemic ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE