My watch list
my.chemeurope.com  
Login  

In the wake of high-profile battery fires, a safer approach emerges

16-May-2014

As news reports of lithium-ion battery (LIB) fires in Boeing Dreamliner planes and Tesla electric cars remind us, these batteries — which are in everyday portable devices, like tablets and smartphones — have their downsides. Now, scientists have designed a safer kind of lithium battery component that is far less likely to catch fire and still promises effective performance. They report their approach in the Journal of the American Chemical Society.

Lynden Archer, Geoffrey Coates and colleagues at Cornell University explain that the danger of LIBs originates with their electrolytes, the substance that allows ions to flow between the electrodes of the battery. The electrolyte usually contains a flammable liquid. To minimize this fire hazard, some researchers are developing more stable, solid electrolytes. But although solid electrolytes are less likely to fuel a fire, their ability to transport ions has fallen short, especially at room temperature. Coates's team set out to tackle both issues and come up with a safer, high-performance battery component, while Archer's team studied the electrochemical characteristics of the materials.

The team's efforts have led to a new family of solid polymer electrolytes that is both good at conducting lithium ions at room temperature and minimizing the risk of fire. Not only are these materials safer than their liquid counterparts in LIBs, but they could also be used in high-energy lithium-metal batteries, such as promising lithium-sulfur and lithium-air batteries.

Facts, background information, dossiers
More about American Chemical Society
More about Cornell University
  • News

    Cornell researchers create first self-assembled superconductor

    Building on nearly two decades' worth of research, a multidisciplinary team at Cornell has blazed a new trail by creating a self-assembled, three-dimensional gyroidal superconductor. Ulrich Wiesner, a materials science and engineering professor who led the group, says it's the first time a ... more

    Building blocks for GaN power switches

    A team of engineers from Cornell University, the University of Notre Dame and the semiconductor company IQE has created gallium nitride (GaN) power diodes capable of serving as the building blocks for future GaN power switches -- with applications spanning nearly all electronics products an ... more

    Carbon-trapping 'sponges' can cut greenhouse gases

    In the fight against global warming, carbon capture - chemically trapping carbon dioxide before it releases into the atmosphere - is gaining momentum, but standard methods are plagued by toxicity, corrosiveness and inefficiency. Using a bag of chemistry tricks, Cornell materials scientists ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE