NREL bolsters batteries with nanotubes

07-Jul-2014 - USA

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) are turning to extremely tiny tubes and rods to boost power and durability in lithium-ion batteries. If successful, the batteries will last longer and perform better, leading to a cost advantage for electric vehicles.

NREL's Energy Storage group is working with the Energy Department, automotive battery developers, and car manufacturers to enhance the performance and durability of advanced lithium-ion batteries for a cleaner, more secure transportation future, said Energy Storage Group Manager Ahmad Pesaran. "The nanotube approach represents an exciting opportunity—improving the performance of rechargeable lithium-ion batteries while make them last longer," Pesaran said. "Increasing the life and performance of rechargeable batteries will drive down overall electric vehicle costs and make us less reliant on foreign sources of energy."

Scientists at NREL have created crystalline nanotubes and nanorods to attack the major challenges inherent in lithium-ion batteries: they can get too hot, weigh too much, and are less than stellar at conducting electricity and rapidly charging and discharging.

NREL's most recent contribution toward much-improved batteries are high-performance, binder-free, carbon-nanotube-based electrodes. The technology has quickly attracted interest from industry and is being licensed to NanoResearch, Inc., for volume production.

"Think of a lithium-ion battery as a bird's nest," NREL Scientist Chunmei Ban said. "The NREL approach uses nanorods to improve what is going on inside, while ensuring that the nest remains durable and resilient."

"We are changing the architecture, changing the chemistry somewhat," without changing the battery itself, she said.

Typical lithium-ion batteries use separate materials for conducting electrons and binding active materials, but NREL's approach uses carbon nanotubes for both functions. "That improves our mass loading, which results in packing more energy into the same space, so better energy output for the battery," Ban said. "The NREL approach also helps with reversibility—the reversing of chemical reactions that allows the battery to be recharged with electric current during operation. If we can improve durability and reversibility, we definitely save money and reduce cost."

Other news from the department science

Most read news

More news from our other portals

Discover the latest developments in battery technology!

See the theme worlds for related content

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

15+ products
150+ companies
20+ whitepaper
10+ brochures
View topic world

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

15+ products
150+ companies
20+ whitepaper
10+ brochures