My watch list
my.chemeurope.com  
Login  

Flexible tapes from the nanoworld

Chemical reaction yields "tapes" of porphin molecules

14-Aug-2014

W. Auwärter/Alissa Wiengarten/TUM

Porphin-Dimere

Thorsten Naeser/Munich-Centre for Advanced Photonics

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber.

Dr. Wilhelm Auwärter and his team are working on a research project to develop tiny flat molecule tapes at the Department of Physics of Technische Universität München (TUM). These structures could find versatile applications. Via direct coupling on a silver surface, the scientists successfully formed dimers and short chains of porphine molecules without contaminating by-products.

Porphyrin molecules are essential to many biological processes, such as photosynthesis and respiration.Dr. Wilhelm Auwärter'sgroup is investigating these all-round talents at TU München. Normally, hydrogen attaches to the outer edges of the porphyrin core – named porphine, but other chemical entities can take the place of hydrogen, thereby changing the properties of the molecules.

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber. In the process, individual porphine molecules leave the collective and adhere to a silver surface, where they react with each other and assemble into small groups – all by themselves. Single molecules can desorb from the hot surface, while chains of two, three or more porphine units cannot. In this way the scientists were able to assemble chains of up to 90 porphine units.

Thorough analysis

Using a surface made of silver is essential to the experiment: "Silver seems to be a kind of catalyst for the reaction", Wilhelm Auwärter explains. "Still, we don't fully understand why this is the case."

Aside from fundamental questions, Auwärter’s group also hopes to find a way to generate ordered long molecular porphin chains, so-called tapes. Only one molecule wide, such structures could serve as optically active elements in electronic applications or data storage. 

In order to investigate these tiny structures on the silver surface, Auwärter's team uses a whole range of sophisticated structure analysis techniques available at TUM and through cooperation with international partners.

Fascinating images of the molecular structures, for example, were captured using a scanning tunneling microscope at TUM. The team also conducted spectroscopy analyses using synchrotron radiation of the ELETTRA storage ring in Trieste, which provided important insights into the electronic structure of the porphine groups.

Original publication:

"Surface-assisted Dehydrogenative Homocoupling of Porphine Molecules", Alissa Wiengarten et al.; J. Am. Chem. Soc. 2014, 136, 9346−9354

Facts, background information, dossiers
  • porphin
More about TU München
  • News

    Chocolate physics: How modeling could improve 'mouthfeel'

    Lecithin plays a vital role in the production of chocolate and many other foods. It's never been clear how this ingredient works on a molecular level, and confectioners have relied on observational methods to perfect their recipes. Now, scientists have shown how the field of molecular dynam ... more

    Mini X-ray source with laser light

    Physicists from Ludwig-Maximilians-Universität, the Max Planck Institute of Quantum Optics and the TU München have developed a method using laser-generated X-rays and phase-contrast X-ray tomography to produce three-dimensional images of soft tissue structures in organisms With laser light ... more

    Graphene gets competition

    Graphene, the only one atom thick carbon network, achieved overnight fame with the 2010 Nobel Prize. But now comes competition: Such layers can also be formed by black phosphorous. Chemists at the Technische Universität München (TUM) have now developed a semiconducting material in which ind ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE