My watch list  

Flexible tapes from the nanoworld

Chemical reaction yields "tapes" of porphin molecules


W. Auwärter/Alissa Wiengarten/TUM


Thorsten Naeser/Munich-Centre for Advanced Photonics

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber.

Dr. Wilhelm Auwärter and his team are working on a research project to develop tiny flat molecule tapes at the Department of Physics of Technische Universität München (TUM). These structures could find versatile applications. Via direct coupling on a silver surface, the scientists successfully formed dimers and short chains of porphine molecules without contaminating by-products.

Porphyrin molecules are essential to many biological processes, such as photosynthesis and respiration.Dr. Wilhelm Auwärter'sgroup is investigating these all-round talents at TU München. Normally, hydrogen attaches to the outer edges of the porphyrin core – named porphine, but other chemical entities can take the place of hydrogen, thereby changing the properties of the molecules.

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber. In the process, individual porphine molecules leave the collective and adhere to a silver surface, where they react with each other and assemble into small groups – all by themselves. Single molecules can desorb from the hot surface, while chains of two, three or more porphine units cannot. In this way the scientists were able to assemble chains of up to 90 porphine units.

Thorough analysis

Using a surface made of silver is essential to the experiment: "Silver seems to be a kind of catalyst for the reaction", Wilhelm Auwärter explains. "Still, we don't fully understand why this is the case."

Aside from fundamental questions, Auwärter’s group also hopes to find a way to generate ordered long molecular porphin chains, so-called tapes. Only one molecule wide, such structures could serve as optically active elements in electronic applications or data storage. 

In order to investigate these tiny structures on the silver surface, Auwärter's team uses a whole range of sophisticated structure analysis techniques available at TUM and through cooperation with international partners.

Fascinating images of the molecular structures, for example, were captured using a scanning tunneling microscope at TUM. The team also conducted spectroscopy analyses using synchrotron radiation of the ELETTRA storage ring in Trieste, which provided important insights into the electronic structure of the porphine groups.

Original publication:

"Surface-assisted Dehydrogenative Homocoupling of Porphine Molecules", Alissa Wiengarten et al.; J. Am. Chem. Soc. 2014, 136, 9346−9354

Facts, background information, dossiers
  • porphin
More about TU München
  • News

    New X-ray method: Scattering provides detailed images of nanostructures

    Both in materials science and in biomedical research it is important to be able to view minute nanostructures, for example in carbon-fiber materials and bones. A team from the Technical University of Munich (TUM), the University of Lund, Charité hospital in Berlin and the Paul Scherrer Inst ... more

    Perpetual youth for batteries?

    A key issue with lithium ion batteries is aging. It significantly reduces their potential storage capacity. To date, very little is known about the causes of the aging effects. Scientists from the Department of Technical Electrochemistry and the Research Neutron Source FRM II at the Technic ... more

    New method facilitates research on fuel cell catalysts

    While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Catalyst design plays a key role in improving these processes. An international team of ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE