My watch list
my.chemeurope.com  
Login  

Tiny fibers create unseen plastic pollution

18-Feb-2019

Patrick Mansell

This is a close up of the fibers shed from fabric in a clothes dryer. These are the fibers that go down the drain and into the global water system.

While the polyester leisure suit was a 1970s mistake, polyester and other synthetic fibers like nylon are still around and are a major contributor to the microplastics load in the environment, according to a Penn State materials scientist, who suggests switching to biosynthetic fibers to solve this problem.

"These materials, during production, processing and after use, break down into and release microfibers that can now be found in everything and everyone," said Melik Demirel, Lloyd and Dorothy Foehr Huck Endowed Chair in Biomimetic Materials.

Unlike natural fibers like wool, cotton and silk, current synthetic fibers are petroleum-based products and are mostly not biodegradable. While natural fibers can be recycled and biodegrade, mixed fibers that contain natural and synthetic fibers are difficult or costly to recycle.

Islands of floating plastic trash in the oceans are a visible problem, but the pollution produced by textiles is invisible and ubiquitous. In the oceans, these microscopic plastic pieces become incorporated into plants and animals. Harvested fish carry these particles to market and, when people eat them, they consume microplastic particles as well.

Demirel suggested four possible approaches to solving this problem. The first is to minimize the use of synthetic fibers and switch back to natural fibers such as wool, cotton, silk and linen. However, synthetic fibers are less expensive and natural fibers have other environmental costs, such as water and land-use issues.

Because much of the microfiber load that ends up in water sources comes from laundering, he suggests aftermarket filters for washing-machine outflow hoses. Clothes dryers have filters that catch lint - also microfiber waste - but current, front-loading washing machines usually do not.

"Capturing the microplastics at the source is the best filtering option," said Demirel.

He also notes that bacteria that consume plastics do exist, but are currently at the academic research phase, which takes some time to gain industrial momentum. If bacteria were used on a large scale, they could aid in biodegradation of the fibers or break the fibers down to be reused.

While these three options are possible, they do not solve the problem of the tons of synthetic fibers currently used in clothing around the world. Biosynthetic fibers, a fourth option, are both recyclable and biodegradable and could directly substitute for the synthetic fibers. They could also be blended with natural fibers to provide the durability of synthetic fibers but allow the blends to be recycled.

Derived from natural proteins, biosynthetic fibers also can be manipulated to have desirable characteristics. Demirel, who developed a biosynthetic fiber composed of proteins similar to silk but inspired by those found in squid ring teeth, suggests that by altering the number of tandem repeats in the sequencing of the proteins, the polymers can be altered to meet a variety of properties.

For example, material manufactured from biosynthetic squid ring-teeth proteins, called Squitex, is self-healing. Broken fibers or sections will reattach with water and a little pressure and enhance the mechanical properties of recycled cotton as a blend. Also, because the fibers are organic, they are completely biodegradable as well.

Facts, background information, dossiers
More about Pennsylvania State University
  • News

    Antireflection coating makes plastic invisible

    Antireflection (AR) coatings on plastics have a multitude of practical applications, including glare reduction on eyeglasses, computer monitors and the display on your smart-phone when outdoors. Now, researchers at Penn State have developed an AR coating that improves on existing coatings t ... more

    Bacterial protein could help find materials for your next smartphone

    A newly discovered protein could help detect, target, and collect from the environment the rare-earth metals used in smartphones. Two new studies by researchers at Penn State describe the protein, which is 100 million times better at binding to lanthanides--the rare-earth metals used in sma ... more

    Sintering atomically thin materials with ceramics now possible

    For the first time, researchers have created a nanocomposite of ceramics and a two-dimensional material, opening the door for new designs of nanocomposites with such applications as solid-state batteries, thermoelectrics, varistors, catalysts, chemical sensors and much more. Sintering uses ... more

  • Videos

    2-D layered devices can self-assemble with precision

    Video shows layered, self-assembled graphene oxide sheets with synthetic proteins patterned on squid ring teeth made into an actuator with substantial curvature. The second segment shows the same device using graphene oxide only. There is no movement.Credit: Melik Demirel,/Penn State. more

    Flexible Insulator

    "This is the first time that a self-healable material has been created that can restore multiple properties over multiple breaks, and we see this being useful across many applications," said Qing Wang, professor of materials science and engineering, Penn State. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE