My watch list
my.chemeurope.com  
Login  

Artificial leaf goes more efficient for hydrogen generation

06-Jan-2017

UNIST

This is the newly-developed hetero-type dual photoelectrodes by Professor Jae Sung Lee and Professor Ji-Wook Jang's joint reserach team.

A team of international researchers, affiliated with UNIST has recently engineered a new artificial leaf that can convert sunlight into fuel with groundbreaking efficiency.

The research results were achieved by Professor Jae Sung Lee and Professor Ji-Wook Jang of Energy and Chemical Engineering at UNIST in collaboration with Professor Roel van de Krol at the Helmholtz-Zentrum Berlin, Germany.

In the study, the research presented a hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Their new artificial leaf mimics the natural process of underwater photosynthesis of aquatic plants to split water into hydrogen and oxygen, which can be harvested for fuel.

This study is expected to contribute greatly to the reduction and treatment of carbon dioxide emissions in accordance with the recent Paris Agreement on climate change. Because using hydrogen produced by artificial leaf as fuel, does not generate carbon dioxide emissions. In addition, it can be used as a cheap and stable hydrogen fuel for hydrogen fuel cell vehicles.

Just like any other plants, marine plants also generate energy from the sun through photosynthesis. However, it is difficult to receive the full sunlight deep under the sea. Therefore, they are subjected to various types of photosynthesis that selectively utilize wavelengths reaching their depths.

"We aim to achieve 10% enhanced light harvesting efficiency within three years," says Professor Lee. "This technology will greatly contribute to the establishment of the renewable-energy-type hydrogen refueling station by supplying cheap fuel for hydrogen fuel cell vehicles.

Facts, background information, dossiers
  • renewable energy
  • artificial leaves
More about UNIST
  • News

    Identification of molecular origins underlying the interfacial slip

    A team of researchers, affiliated with UNIST has discovered the fundamental principles of handling polymers, which constitute the basis of man-made materials, such as plastics, paints, and even consmatics. In this work, Professor Chunggi Baig of Energy and Chemical Engineering and his team ... more

    New economic water-splitting catalyst

    UNIST scientists have developed an exiting new catalyst that can split water into hydrogen almost as good as platinum, but less costly and found frequently on Earth. As described in the journal Nature Nanotechnology, this ruthenium-based material works almost as efficient as platinum and li ... more

    An oxide semiconductor just single atom thick

    A new study, affiliated with UNIST has introduced a novel method for fabrication of world's thinnest oxide semiconductor that is just one atom thick. This may open up new possibilities for thin, transparent, and flexible electronic devices, such as ultra-small sensors. This new ultra-thin o ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE