My watch list
my.chemeurope.com  
Login  

Metal-organic frameworks used as looms

Producing two-dimensional textiles from monomolecular polymer threads

16-Feb-2017

KIT

The metal-organic framework is set up like a sandwich (a). The molecular textile layer is woven in an active layer that is embedded between so-called sacrificial layers (b).

Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials. To produce cloths from monomolecular threads, the scientists used SURMOFs, i.e. surface-mounted metal-organic frameworks, developed by KIT. They inserted four-armed monomers, i.e. smaller molecular building blocks, into some SURMOF layers. Cross-linking of the monomers then resulted in textiles consisting of interwoven polymer threads.

Self-organized cross-linking of polymer threads, i.e. of extremely long molecules, to two-dimensional tissues is a big challenge in polymer chemistry. With the help of a bottom-up process to cross-link smaller molecules, so-called monomers, scientists of the Institute of Functional Interfaces (IFG) and Institute of Nanotechnology (INT) of KIT now made an important step towards reaching this objective. They produced a tissue from monomolecular polymer threads by using SURMOFs, i.e. surface-mounted metal-organic frameworks, as looms.

The SURMOFs developed by IFG are frameworks consisting of metallic node points and organic linkers that are assembled on a substrate layer by layer. They have a crystalline structure and can be customized to a large range of the applications by combining various materials and varying the pore sizes. For weaving two-dimensional textiles, the KIT scientists specifically inserted special connection elements, i.e. four-armed monomers, into the SURMOF layers for later cross-linking. Then, these active SURMOF layers were embedded between so-called sacrificial layers. "In this way, we produced a sandwich-type setup to ensure that the textiles produced really are two-dimensional, which means that they have a thickness of one molecule layer only," Professor Christof Wöll says. He heads the IFG and is the corresponding author of the publication together with Professor Marcel Mayor of INT.

The scientists then applied a catalyst in these active SURMOF layers to start a reaction for linking the monomers to polymers. Afterwards, the metallic node points were removed. Flat tissues of monomolecular polymer threads remained. "The polymer threads are kept together by the mechanical forces resulting from the weave pattern," Marcel Mayor explains. "Hence, the molecular tissues are as flexible as textiles produced in a conventional way."

Facts, background information, dossiers
  • SURMOFs
More about KIT
  • News

    Quantum computing with molecules for a quicker search of unsorted databases

    Scrapbooks or social networks are collections of mostly unsorted data. The search for single elements in very large data volumes, i.e. for the needle in the data haystack, is extremely complex for classical computers. Scientists of Karlsruhe Institute of Technology (KIT) have now quantum me ... more

    ZEISS Invests €30 Million in Innovation Hub at KIT

    ZEISS plans to build a new shared innovation hub on the north campus of the Karlsruhe Institute of Technology (KIT). Construction is scheduled to begin in early 2018; the €30 million hub will cover 12,000 square meters. With the ZEISS Innovation Hub, the global technology leader in optics a ... more

    Tiny lasers from a gallery of whispers

    Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a phenomenon similar to an effect observed in circular galleries, such as in some cathedrals or museums, where sound waves travel across t ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE