My watch list  

Low-cost battery from waste graphite


Empa / ETH Zürich

Kish graphite is a waste product from steel production. It could be used to make a cheap rechargeable battery out of abundant materials.

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out waste graphite and scrap metal.

Kostiantyn Kravchyk works in the group of Maksym Kovalenko. This research group is based at both ETH Zurich and in Empa’s Laboratory for Thin Films and Photovoltaics. The two researchers’ ambitious goal at the Empa branch is to make a battery out of the most common elements in the Earth’s crust – such as magnesium or aluminum. These metals offer a high degree of safety, even if the anode is made of pure metal. This also offers the opportunity to assemble the batteries in a very simple and inexpensive way and to rapidly upscale the production.

In order to make such batteries run, the liquid electrolyte needs to consist of special ions that do not crystallize at room temperature – i.e. form a kind of melt. The metal ions move back and forth between the cathode and the anode in this “cold melt”, encased in a thick mantle of chloride ions. Alternatively, large but lightweight organic anions, which are metal-free, could be used. This does come with a problem, though: where are these “thick” ions supposed to go when the battery is charged? What could be a suited cathode material? By way of comparison: in lithium ion batteries, the cathode is made of a metal oxide, which can easily absorb the small lithium cations during charging. This does not work for such large ions, however. In addition, these large anions have an opposite charge to the lithium cations.

Battery turned “upside down”

To solve the problem, Kovalenko’s team had a trick up their sleeves: the researchers turned the principle of the lithium ion battery upside down. In conventional Li-ion batteries, the anode (the negative pole) is made of graphite, the layers of which (in a charged state) contain the lithium ions. In Kovalenko’s battery, on contrary, the graphite is used as a cathode (the positive pole). The thick anions are deposited in-between the graphene layers. In Kovalenko’s battery, the anode is made of metal.

Kravchyk made a remarkable discovery while searching for the “right” graphite: he found that waste graphite produced in steel pro-duction, referred to as ”kish graphite”, makes for a great cathode material. Natural graphite also works equally well – if it is supplied in coarse flakes and not ground too finely or into folded, non-flake shapes. The reason: the graphite layers are open at the flakes’ edges and the thick anions are thus able to slip into the structure more easily. The fine-ground graphite normally used in lithium ion batteries, however, is ill-suited for Kovalenko’s battery: by grinding the graphite particles, the layers become creased like crumpled-up paper. Only small lithium ions are able to penetrate this crumpled graphite, not the new battery’s thick anions.

The graphite cathode battery constructed from steel production “kish graphite” or raw, natural graphite flakes has the potential to become highly cost-effective. And if the first experiments are anything to go by, it is also long-lasting. For several months, a lab system survived thousands of charging and discharging cycles. “The aluminum chloride – graphite cathode battery could last decades in everyday household use,” explains Kravchyk and adds “similar demonstrations, but further increased battery voltages, without compromising capacities, and of even lighter elements are on the way and will offer further increase in energy densities from current 60 Wh kg-1 to above 150 Wh kg-1”

Facts, background information, dossiers
  • ETH Zürich
  • cathode materials
More about Empa
  • News

    Batteries with better performance and improved safety

    Phones, laptops, electric cars - batteries are everywhere. And to meet the expectations of today's consumers, these batteries are increasin­gly lighter, more powerful and designed to last longer. Currently the core technology for these applications is lithium ion batteries. But the technolo ... more

    New batteries with better performance and improved safety

    Phones, laptops, electric cars - batteries are everywhere. And to meet the expectations of today's consumers, these batteries are increasingly light, more powerful and designed to last longer. Currently the most important technology for these applications is the lithium-ion battery technolo ... more

    The stacked colour sensor

    Red-sensitive, blue-sensitive and green-sensitive colour sensors stacked on top of each other instead of being lined up in a mosaic pattern - this principle could allow image sensors with unprecedented resolution and sensitivity to light to be created. However, up to now, the reality hasn't ... more

More about ETH Zürich
  • News

    Liquid shock absorbers

    Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites. At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fa ... more

    The world's shortest laser pulse

    ETH researchers succeeded in shortening the pulse duration of an X‑ray laser to only 43 attoseconds. With a time resolution in the range of a few quintillionths of a second, they are now able for the first time to observe the movement of electrons during chemical reactions in slow motion. I ... more

    Google provides open source library for quantum chemistry

    Since physicists have been dealing with the theoretical description of molecules, the solving of quantum mechanical equations has been a major obstacle. This is supposed to be a thing of the past with the release of an open source based system. Google has introduced such a system to the pub ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE