My watch list
my.chemeurope.com  
Login  

New X-ray spectroscopy explores hydrogen-generating catalyst

23-Nov-2017

Cramer Lab, UC Davis

Using a newly developed technique and one of the world's most advanced X-ray sources, researchers from Japan, Germany and the US are studying enzymes that can produce hydrogen gas. Understanding these reactions could be important in developing a clean-fuel economy powered by hydrogen.

Using a newly developed technique, researchers from Japan, Germany and the U.S. have identified a key step in production of hydrogen gas by a bacterial enzyme. Understanding these reactions could be important in developing a clean-fuel economy powered by hydrogen.

The team studied hydrogenases - enzymes that catalyze production of hydrogen from two widely distributed organisms: Chlamydomonas reinhardtii, a single-cell algae and Desulfovibrio desulfuricans, a bacterium.

In both cases, their hydrogenase enzymes have an active site with two iron atoms.

"Among hydrogenases, [FeFe] hydrogenase has the highest turnover rate (molecular hydrogen production rate) and therefore has a potential role in the future hydrogen economy, either by a direct use or by a synthetic complex which has a similar reaction center," said Professor Stephen P. Cramer in the UC Davis Department of Chemistry and coauthor on the paper along with graduate students Cindy C. Pham (co-first author) and Nakul Mishra and project scientist Hongxin Wang in the same department.

The researchers used a technique called nuclear resonant vibrational spectroscopy (NRVS) to follow the vibrational structures and analysis activity at the iron atoms in the enzyme. NRVS requires special equipment, and is currently only available at four sites in the world: the SPring-8 synchrotron in Hyogo, Japan, where this study was carried out; the Advanced Photon Source at Argonne National Laboratory, Illinois; the European Synchrotron Radiation Facility in Grenoble, France; and Petra-III in Hamburg, Germany.

Using NRVS, the team could show that the iron atoms briefly form a hydride (iron-hydrogen) before releasing molecular hydrogen (H2). It's the first successful experiment of its type on naturally occurring [FeFe] hydrogenases, Wang said.

"The successful outcome of this research is due to the broad collaboration between biochemists, spectroscopists, experimental physicists and theoreticians," Wang said. "This starts a journey to pursue iron specific information for all the intermediates in [FeFe] hydrogenase in the future."

Facts, background information, dossiers
  • hydrogenases
  • Chlamydomonas reinhardtii
  • vibrational spectroscopy
  • nuclear resonant vi…
  • Desulfovibrio desulfuricans
More about UC Davis
  • News

    New, simplified technique makes light metallic nanofoam

    A simple method for manufacturing extremely low-density palladium nanofoams could help advance hydrogen storage technologies, reports a new study from the University of California, Davis. A nanofoam is what it sounds like -- a foamy version of some material, filled with very small pores. Fi ... more

    New types of structures for cage-like clathrates

    Cage-like compounds called clathrates could be used for harvesting waste heat and turning it into electricity. UC Davis chemists just discovered a whole new class of clathrates, potentially opening new ways to make and apply these materials. A clathrate is basically a cage of atoms with ano ... more

    NMR under pressure: Reproducing deep-Earth chemistry

    A new pressure cell invented by UC Davis researchers makes it possible to simulate chemical reactions deep in the Earth's crust. The cell allows researchers to perform nuclear magnetic resonance (NMR) measurements on as little as 10 microliters of liquid at pressures up to 20 kiloBar. "NMR ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE