My watch list
my.chemeurope.com  
Login  

A simpler way to deposit magnetic iron oxide onto gold nanorods

14-Dec-2017

Brian Chapman

Mixing silica-overcoated gold nanorods (left) and iron oxide nanoparticles (center) yields iron oxide-overcoated gold nanorods (right).

Researchers from North Carolina State University and MIT have found a simpler way to deposit magnetic iron oxide (magnetite) nanoparticles onto silica-coated gold nanorods, creating multifunctional nanoparticles with useful magnetic and optical properties.

Gold nanorods have widespread potential applications because they have a surface plasmon resonance - meaning they can absorb and scatter light. And by controlling the dimensions of the nanorods, specifically their aspect ratio (or length divided by diameter), the wavelength of the absorbed light can be controlled. This characteristic makes gold nanorods attractive for use in catalysis, security materials and a host of biomedical applications, such as diagnostics, imaging, and cancer therapy. The fact that the magnetite-gold nanoparticles can also be manipulated using a magnetic field enhances their potential usefulness for biomedical applications, such as diagnostic tools or photothermal therapeutics.

"The approach we outline in our new paper is simple, likely making it faster and less expensive than current techniques for creating these nanoparticles - on a small scale or a large one," says Joe Tracy, an associate professor of materials science and engineering at NC State and corresponding author of a paper on the work.

The new technique uses an approach called heteroaggregation. Silica-coated gold nanorods are dispersed in ethanol, a polar solvent. In ethanol, the hydrogen atoms are partially positively charged, and the oxygen atoms are partially negatively charged. The magnetite nanoparticles are dispersed in hexanes, a non-polar solvent, where the charges are not separated. When the two solutions are mixed, the magnetite nanoparticles bind to the gold nanorods - and the resulting magnetite-gold nanoparticles are removed from the solvent using a simple centrifugation process.

"We are able to take pre-synthesized, silica-coated gold nanorods and iron oxide nanoparticles and then combine them," says Brian Chapman, a Ph.D. student at NC State and lead author of the paper. "This is simpler than other techniques, which rely on either growing iron oxide nanoparticles on gold nanorods or using molecular cross-linkers to bind the iron to the silica coating of the nanorods."

"Our approach also results in highly uniform nanoparticles," Tracy says. "And by incorporating ligands called PEG-catechols, the resulting nanoparticles can be dispersed in water. This makes them more useful for biomedical applications.

"These are interesting, and potentially very useful, multifunctional nanoparticles," Tracy adds. "And hopefully this work will facilitate the development of applications that capitalize on them."

Facts, background information, dossiers
  • nanorods
  • silica-coated gold nanorods
  • materials science
  • imaging
  • diagnostics
  • catechols
  • PEG-catechols
More about North Carolina State University
  • News

    Printing low-cost flexible, stretchable electronics

    Researchers from North Carolina State University have developed a new technique for directly printing metal circuits, creating flexible, stretchable electronics. The technique can use multiple metals and substrates and is compatible with existing manufacturing systems that employ direct pri ... more

    Tech increases microfluidic research data output 100-fold

    Researchers have developed a technique that allows users to collect 100 times more spectrographic information per day from microfluidic devices, as compared to the previous industry standard. The novel technology has already led to a new discovery: the speed of mixing ingredients for quantu ... more

    How rough microparticles can cause big problems

    New research from North Carolina State University, MIT and the University of Michigan finds that the surface texture of microparticles in a liquid suspension can cause internal friction that significantly alters the suspension's viscosity - effectively making the liquid thicker or thinner. ... more

  • Videos

    Curvature from planar polymer sheets in response to light

    Researchers at NC State have developed a way to create curvature from 2D sheets using only light.The advance builds on earlier work by the same research team, which focused on self-folding 3-D structures. The key advance here is that rather than having the plastic fold along sharp lines – i ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE