To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
16 Current news of Uni Bielefeld
rss![]() |
You can refine your search further. Select from the filter options on the left to narrow down your results. |
Method offers the promise of many possible applications across the chemical and pharmaceutical industries
05-Sep-2022
A team from Bielefeld University, Queen Mary University of London, Imperial College London (both United Kingdom) and Northwestern University in Evanston (USA) have produced a new breed of polymer nanomembranes with aligned supramolecular macrocycle molecules. These new nanomembranes demonstrate ...
“Materials like this with selective permeability are in high demand in industry”
09-Mar-2022
Scientists have long tried to use graphene, which is composed of carbon, as a kind of sieve. But this material doesn’t have any pores. Now, a team has found an alternative material which comes with pores from the outset. Researchers from Bielefeld, Bochum and Yale have succeeded in producing a ...
"Our special material design has made it possible for us to tease out properties that we know from theory but could not see before"
23-Sep-2021
Three-dimensional topological insulators are materials that can conduct electric current without resistance—but only on their surface. However, this effect is difficult to measure. This is because these materials usually have little surface area in relation to their volume, which means their ...
Research team demonstrates control mechanism for quantum material
12-Apr-2021
How can large amounts of data be transferred or processed as quickly as possible? One key to this could be graphene. The ultra-thin material is only one atomic layer thick, and the electrons it contains have very special properties due to quantum effects. It could therefore be very well suited ...
New material increases efficiency
22-Nov-2017
Electronic devices such as computers generate heat that mostly goes to waste. Physicists at Bielefeld University have found a way to use this energy: They apply the heat to generate magnetic signals known as 'spin currents'. In future, these signals could replace some of the electrical current in ...
27-Apr-2017
This information can be used to produce images with a resolution of about 20 to 30 nanometres, and thereby ten times that of conventional light microscopy. Until now, this method has required the use of expensive special instruments. Bielefeld University and the University of Tromsø have filed a ...
02-Sep-2015
Light-absorbing films can be found in many everyday applications such as solar cells or sensors. They are used to convert light into electrical current or heat. The films literally trap the light. Although such absorber films are applied widely, scientists still do not know which mechanism ...
Researchers at the universities in Bielefeld, Manchester, and Zaragoza present low-temperature experiment in Nature Communications
24-Oct-2014
An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. The physicists and chemists are presenting their new investigation in Nature ...
26-Aug-2013
In the future, carbon nanomembranes are expected to be able to filter out very fine materials. These separating layers are ultrathin, consisting of just one layer of molecules. In the long term, they could allow to separate gases from one another, for example, filtering toxins from the air. At ...
Concept is based on research at Bielefeld University
22-Sep-2011
Semiconductor thin films with special electronic, magnetic or optical functions are widely demanded for technical applications in increasingly smaller and efficient devices - they are indispensable in high-efficiency solar cells, bright light-emitting diodes and magneto-electronic devices. ...