To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
25 Current news of Uni Regensburg
rss![]() |
You can refine your search further. Select from the filter options on the left to narrow down your results. |
Basis for extremely sensitive infrared and terahertz detectors much smaller than existing ones, with similar absorption efficiency
24-Feb-2022
Scientists from University of Regensburg, Massachusetts Institute of Technology, Moscow institute of Physics and Technology, and University of Kansas have discovered abnormally strong light absorption in graphene. The effect arises from the conversion of ordinary electromagnetic waves into ...
Scientists explore electronic circuits without heat dissipation
23-Nov-2021
When you hold a smartphone in your hand or put your hand to the back of a desktop PC, you can feel it: electronic calculations inevitably generate heat. A team of scientists led by Professor Christoph Strunk und Dr. Nicola Paradiso from the Institute for Experimental and Applied Physics at the ...
Researchers create novel molecules that serve as ziplines for energy
18-Nov-2021
Researchers from the Universities of Bonn and Regensburg move packets of energy along a molecular ladder made of hundreds of benzene rings. Such polymers can potentially be used to design new displays based on organic light-emitting diodes, or for solar cells. The extraordinary material is now ...
Researchers track the first step of the reaction of one single dye pigment with oxygen at unprecedented resolution
26-Jul-2021
Why is it that the colours of a t-shirt fade over time in the sun? Why do you get a sunburn, and why do the leaves of a tree turn brown in the autumn? These questions all have one theme in common, the interplay between dye pigments and ambient oxygen. Every child learns about this chemical ...
New contact-free nanoscopy concept
17-May-2021
A team of physicists from Germany, the US and the UK managed to observe the motion of electrons from one atomically thin layer into an adjacent one with nanoscale spatial resolution. The new contact-free nanoscopy concept, which shows great potential for investigations into conducting, ...
Researchers have tailored the mutual interaction of electrons in an atomically thin solid by simply covering it with a crystal featuring hand-picked lattice dynamics
24-Mar-2021
In a cubic centimeter of a solid there are typically 10²³ electrons. In this massive many-body system, seemingly simple pairwise electron-electron interaction can cause extremely complex correlations and exotic behavior, such as superconductivity. This quantum phenomenon turns a solid into a ...
07-Dec-2020
A new tool that uses light to map out the electronic structures of crystals could reveal the capabilities of emerging quantum materials and pave the way for advanced energy technologies and quantum computers, according to researchers at the University of Michigan, the University of Regensburg and ...
Watching metamaterials at work in real time using ultrafast electron diffraction
26-Nov-2020
Physicists from the University of Konstanz, Ludwig-Maximilians-Universität München (LMU Munich) and the University of Regensburg have successfully demonstrated that ultrashort electron pulses experience a quantum mechanical phase shift through their interaction with light waves in nanophotonic ...
19-Nov-2020
Researchers at the the University of Regensburg and the MPSD in Hamburg have developed a groundbreaking method to detect the dynamics of light on such a small scale with high temporal resolution. Since the 17th century, researchers have explored tiny objects in their most fundamental detail using ...
Not only observe individual molecules, but even control them
04-Sep-2020
Scientists from Regensburg and Zurich have found a fascinating way to push an atom with controlled forces so quickly that they can choreograph the motion of a single molecule within less than a trillionth of a second. The extremely sharp needle of their unique ultrafast microscope serves as the ...