My watch list  

Poly(phosphorodiamidate)s by Olefin Metathesis Polymerization with Precise Degradation


Degradable polymers are a currently growing field of research for biomedical and materials science applications. The majority of such compounds are based on polyesters and polyamides. In contrast, their phosphorus‐containing counterparts are much less studied, in spite of their potential precise degradation profile and biocompatibility. Herein, the first library of poly(phosphorodiamidate)s (PPDAs) with two P−N bonds forming the polymer backbone and a pendant P−OR group is prepared through acyclic diene metathesis polymerization. They are designed to vary in their hydrophilicity and are compared with the structural analogues poly(phosphoester)s (PPEs) with respect to their thermal properties and degradation profiles. The degradation of PPDAs can be controlled precisely by the pH: under acidic conditions the P−N linkages in the polymer backbone are cleaved, whereas under basic conditions the pendant ester is cleaved selectively and almost no backbone degradation occurs. The PPDAs exhibit distinctively higher thermal stability (from thermogravimetric analysis (TGA)) and higher glass transition and/or melting temperatures (from differential scanning calorimetry (DSC)) compared with analogous PPEs. This renders this exotic class of phosphorus‐containing polymers as highly promising for the development of future drug carriers or tissue engineering scaffolds.

Poly(phosphorodiamidate)s have been prepared by ADMET (acyclic diene metathesis) polycondensation. These novel materials with adjustable hydrophilicity represent an alternative to poly(phosphazene)s or poly(phosphoester)s and exhibit a precise degradation profile.

Authors:   Mark Steinmann, Manfred Wagner, Frederik R. Wurm
Journal:   Chemistry - A European Journal
Year:   2016
Pages:   n/a
DOI:   10.1002/chem.201603990
Publication date:   26-Oct-2016
Facts, background information, dossiers
  • tissue engineering
  • thermogravimetric analysis
  • stability
  • Research
  • Renders
  • Polycondensation
  • glass
  • drug carriers
More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE