My watch list  

Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large‐Scale Solution‐Synthesized Bi2Te2.5Se0.5 Hollow Nanostructures


To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low‐temperature colloidal processing route for Bi2Te2.5Se0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m−1 K−1) and the highest z T (1.18) among state‐of‐the‐art Bi2Te3−xSex materilas. Additional benefits of the unprecedented low relative density (68–77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase‐transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.

Poröse thermoelektrische Komposite mit einer extrem niedrigen thermischen Leitfähigkeit und hoher Leistungszahl wurden in großen Mengen aus in Lösung synthetisierten hohlen Bi2Te2.5Se0.5‐Nanostrukturen hergestellt. Die leichtgewichtigen Materialien erfordern weniger Rohmaterial und verbessern die Tragbarkeit thermoelektrischer Komponenten.

Authors:   Biao Xu, Tianli Feng, Matthias T. Agne, Lin Zhou, Xiulin Ruan, G. Jeffery Snyder, Yue Wu
Journal:   Angewandte Chemie
Year:   2017
Pages:   n/a
DOI:   10.1002/ange.201612041
Publication date:   12-Jan-2017
More about Angewandte Chemie
  • News

    Little Heaps of Silver, All Wrapped Up

    Nanoclusters are little “heaps” of a few atoms that often have interesting optical properties and could become useful probes for imaging processes in areas such as biomedicine and diagnostics. In the journal Angewandte Chemie, researchers have introduced a nanocluster of 16 silver atoms sta ... more

    Doped Photovoltaics

    Organic solar cells are made of cheap and abundant materials, but their efficiency and stability still lag behind those of silicon-based solar cells. A Chinese-German team of scientists has found a way to enhance the electric conductivity of organic solar cells, which increases their perfor ... more

    Analysis and Detoxification in One Step

    Many industrial and agriculture processes use chemicals that can be harmful for workers and the ecosystems where they accumulate. Researchers from Thailand have now developed a bioinspired method to detect and detoxify these chemicals in only one step. As they report in the journal Angewand ... more

More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE