My watch list  

Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms


Supported metal nanocrystals have exhibited remarkable catalytic performance in hydrogen generation reactions, which is influenced and even determined by their supports. Accordingly, it is of fundamental importance to determine the direct relationship between catalytic performance and metal–support interactions. Herein, we provide a quantitative profile for exploring metal–support interactions by considering the highest occupied state in single‐atom catalysts. The catalyst studied consisted of isolated Rh atoms dispersed on the surface of VO2 nanorods. It was observed that the activation energy of ammonia–borane hydrolysis changed when the substrate underwent a phase transition. Mechanistic studies indicate that the catalytic performance depended directly on the highest occupied state of the single Rh atoms, which was determined by the band structure of the substrates. Other metal catalysts, even with non‐noble metals, that exhibited significant catalytic activity towards NH3BH3 hydrolysis were rationally designed by adjusting their highest occupied states.

Phasenabhängig: Wenn einzelne Rh‐Atome auf der Oberfläche von VO2‐Nanostäben als Katalysator für die Hydrolyse von Ammoniak‐Boran verwendet werden, ändert sich die Aktivierungsenergie bei einer Phasenumwandlung des Substrats. Mechanistische Studien weisen darauf hin, dass die katalytische Aktivität vom höchsten besetzten Zustand der einzelnen Rh‐Atome abhängt, der von der Bandenstruktur des Substrats bestimmt wird.

Authors:   Liangbing Wang, Hongliang Li, Wenbo Zhang, Xiao Zhao, Jianxiang Qiu, Aowen Li, Xusheng Zheng, Zhenpeng Hu, Rui Si, Jie Zeng
Journal:   Angewandte Chemie
Year:   2017
Pages:   n/a
DOI:   10.1002/ange.201701089
Publication date:   30-Mar-2017
More about Angewandte Chemie
  • News

    Tetravinylallene, a small but powerful molecule, has been synthesized for the first time

    Many natural compounds used in medicine have complex molecular architectures that are difficult to recreate in the lab. Help could come from a small hydrocarbon molecule, called tetravinylallene, which has been synthesized for the first time by Australian scientists. As detailed in the jour ... more

    Little Heaps of Silver, All Wrapped Up

    Nanoclusters are little “heaps” of a few atoms that often have interesting optical properties and could become useful probes for imaging processes in areas such as biomedicine and diagnostics. In the journal Angewandte Chemie, researchers have introduced a nanocluster of 16 silver atoms sta ... more

    Doped Photovoltaics

    Organic solar cells are made of cheap and abundant materials, but their efficiency and stability still lag behind those of silicon-based solar cells. A Chinese-German team of scientists has found a way to enhance the electric conductivity of organic solar cells, which increases their perfor ... more

More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE