My watch list
my.chemeurope.com  
Login  

Sensors, Vol. 17, Pages 2693: Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis vinifera L.) and Calibration Transfer

Sensors, Vol. 17, Pages 2693: Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis vinifera L.) and Calibration Transfer

Sensors doi: 10.3390/s17112693

Authors: Hui Xiao Ke Sun Ye Sun Kangli Wei Kang Tu Leiqing Pan

Near-infrared (NIR) spectroscopy was applied for the determination of total soluble solid contents (SSC) of single Ruby Seedless grape berries using both benchtop Fourier transform (VECTOR 22/N) and portable grating scanning (SupNIR-1500) spectrometers in this study. The results showed that the best SSC prediction was obtained by VECTOR 22/N in the range of 12,000 to 4000 cm−1 (833–2500 nm) for Ruby Seedless with determination coefficient of prediction (Rp2) of 0.918, root mean squares error of prediction (RMSEP) of 0.758% based on least squares support vector machine (LS-SVM). Calibration transfer was conducted on the same spectral range of two instruments (1000–1800 nm) based on the LS-SVM model. By conducting Kennard-Stone (KS) to divide sample sets, selecting the optimal number of standardization samples and applying Passing-Bablok regression to choose the optimal instrument as the master instrument, a modified calibration transfer method between two spectrometers was developed. When 45 samples were selected for the standardization set, the linear interpolation-piecewise direct standardization (linear interpolation-PDS) performed well for calibration transfer with Rp2 of 0.857 and RMSEP of 1.099% in the spectral region of 1000–1800 nm. And it was proved that re-calculating the standardization samples into master model could improve the performance of calibration transfer in this study. This work indicated that NIR could be used as a rapid and non-destructive method for SSC prediction, and provided a feasibility to solve the transfer difficulty between totally different NIR spectrometers.

Authors:   Xiao, Hui ; Sun, Ke ; Sun, Ye ; Wei, Kangli ; Tu, Kang ; Pan, Leiqing
Journal:   Sensors
Volume:   17
edition:   11
Year:   2017
Pages:   2693
DOI:   10.3390/s17112693
Publication date:   22-Nov-2017
More about Molecular Diversity Preservation International
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE