My watch list  

Inversion Domain Network Stabilization and Spinel Phase Suppression in ZnO


The development of inversion domain networks consisting of basal‐plane and pyramidal‐plane inversion domain boundary (b‐IDB and p‐IDB) interfaces within grains in Sn‐Al dual‐doped ZnO (Zn0.98Sn0.01Al0.01O) polycrystalline ceramics has been confirmed using transmission electron microscopy. The atomic structure of the b‐IDB and p‐IDB interfaces has been analyzed using atomic‐resolution scanning transmission electron microscopy. The localization of Sn and Al at the respective sites of the b‐IDBs and p‐IDBs was confirmed by energy‐dispersive X‐ray spectroscopy. In contrast to Sn or Al single‐dopant addition to ZnO, which results in the formation of spinel phase precipitates without the development of inversion domain networks, Sn‐Al dual‐doping caused the suppression of spinel phase formation and the formation of monophasic inversion domain networks composed of RMO3(ZnO)n homologous phase compound members, where R and M represent dopants substituting at the b‐IDB and p‐IDB sites, with a general formula of SnAlO3(ZnO)n. The results of this study demonstrate that the formation of inversion domain networks in ZnO‐based ceramics can be stabilized via multiple‐dopant addition. This finding has potential implications for the modification of the bulk or nanoscale properties based on the choice of the specific dopants, R and M, the control of the ratio R:M and the value of n in the RMO3(ZnO)n homologous phase compound members constituting the inversion domain networks.

This article is protected by copyright. All rights reserved.

Authors:   Joshua Hoemke, Eita Tochigi, Tetsuya Tohei, Hidehiro Yoshida, Naoya Shibata, Yuichi Ikuhara, Yoshio Sakka
Journal:   Journal of the American Ceramic Society
Year:   2018
Pages:   n/a
DOI:   10.1111/jace.15426
Publication date:   11-Jan-2018
Facts, background information, dossiers
More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE