My watch list
my.chemeurope.com  
Login  

Solution to the Hole-Doping Problem and Tunable Quantum Hall Effect in Bi2Se3 Thin Films

Bi2Se3, one of the most widely studied topological insulators (TIs), is naturally electron-doped due to n-type native defects. However, many years of efforts to achieve p-type Bi2Se3 thin films have failed so far. Here, we provide a solution to this long-standing problem, showing that the main culprit has been the high density of interfacial defects. By suppressing these defects through an interfacial engineering scheme, we have successfully implemented p-type Bi2Se3 thin films down to the thinnest topological regime. On this platform, we present the first tunable quantum Hall effect (QHE) study in Bi2Se3 thin films and reveal not only significantly asymmetric QHE signatures across the Dirac point but also the presence of competing anomalous states near the zeroth Landau level. The availability of doping tunable Bi2Se3 thin films will now make it possible to implement various topological quantum devices, previously inaccessible.

Authors:   Jisoo Moon; Nikesh Koirala; Maryam Salehi; Wenhan Zhang; Weida Wu; Seongshik Oh
Journal:   Nano Letters
Year:   2018
DOI:   10.1021/acs.nanolett.7b04033
Publication date:   17-Jan-2018
Facts, background information, dossiers
More about American Chemical Society Publications
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE