My watch list
my.chemeurope.com  
Login  

Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions

Publication date:

August 2018


Source:Bioelectrochemistry, Volume 122

Author(s): Qiushi Li, Jihui Wang, Xuteng Xing, Wenbin Hu

The corrosion behavior of X65 steel was investigated in the seawater inoculated with sulfate reducing bacteria (SRB) under the aerobic environment by electrochemical impedance techniques and immersion tests. The corroded morphologies and the composition of the corrosion products were investigated. The variation of the solution parameters including the bacterium number, the pH value and the soluble iron concentration were also investigated. The results indicated that in the SRB-containing system, the impedance responses presented a depressed semi-circle in the initial period, which then turned into the blocked electrode characteristic during the later immersion. The biofilm, mainly composed of extracellular polymeric substances, Fe(OH)3, γ-FeOOH and α-Fe2O3, formed and degraded with the SRB growth. The soluble iron concentration initially increased, then rapidly decreased and later slowly increased. In the SRB-containing seawater under the aerobic environment, the X65 steel was corroded in the initial immersion. The corrosion became inhibited with the forming of the biofilm during the subsequent immersion. The inhibition efficiency rapidly increased in the logarithmic phase, remained stable in the stationary phase and then decreased in the declination phase. In the corrosion process, the biofilm metabolized by SRB played a key role in the corrosion inhibition of X65 steel.
Graphical abstract




Authors:   Author(s): Qiushi Li, Jihui Wang, Xuteng Xing, Wenbin Hu
Journal:   Bioelectrochemistry
Volume:   122
Year:   2018
Pages:   40
DOI:   10.1016/j.bioelechem.2018.03.003
Publication date:   15-Apr-2018
Facts, background information, dossiers
  • solution
  • ph value
  • environment
More about Elsevier
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE