My watch list
my.chemeurope.com  
Login  

Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor

Publication date:

Available online 10 April 2018


Source:Bioelectrochemistry

Author(s): Madoka Okurita, Nanami Suzuki, Noya Loew, Hiromi Yoshida, Wakako Tsugawa, Kazushige Mori, Katsuhiro Kojima, David C. Klonoff, Koji Sode

Fungal FAD-dependent glucose dehydrogenases (FADGDHs) are considered to be superior enzymes for glucose sensor strips because of their insensitivity to oxygen and maltose. One highly desirable mediator for enzyme sensor strips is hexaammineruthenium(III) chloride because of its low redox potential and high storage stability. However, in contrast to glucose oxidase (GOx), fungal FADGDH cannot utilize hexaammineruthenium(III) as electron acceptor. Based on strategic structure comparison between FADGDH and GOx, we constructed a mutant of Aspergillus flavus-derived FADGDH, capable of utilizing hexaammineruthenium(III) as electron acceptor: AfGDH-H403D. In AfGDH-H403D, a negative charge introduced at the pathway-entrance leading to the FAD attracts the positively charged hexaammineruthenium(III) and guides it into the pathway. The corresponding amino acid in wild-type GOx is negatively charged, which explains the ability of GOx to utilize hexaammineruthenium(III) as electron acceptor. Electrochemical measurements showed a response current of 46.0 μA for 10 mM glucose with AfGDH-H403D and hexaammineruthenium(III), similar to that with wild-type AfGDH and ferricyanide (47.8 μA). Therefore, AfGDH-H403D is suitable for constructing enzyme electrode strips with hexaammineruthenium(III) chloride as sole mediator. Utilization of this new, improved fungal FADGDH should lead to the development of sensor strips for blood glucose monitoring with increased accuracy and less stringent packing requirements.





Authors:   Author(s): Madoka Okurita, Nanami Suzuki, Noya Loew, Hiromi Yoshida, Wakako Tsugawa, Kazushige Mori, Katsuhiro Kojima, David C. Klonoff, Koji Sode
Journal:   Bioelectrochemistry
Volume:   123
Year:   2018
Pages:   62
DOI:   10.1016/j.bioelechem.2018.04.007
Publication date:   15-Apr-2018
Facts, background information, dossiers
  • enzymes
  • blood
  • Aspergillus flavus
More about Elsevier
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE