Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to
3
20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm−3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107–108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s−1 mrad−2 mm−2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s−1) gamma-ray pulses.
Authors:
Alberto Benedetti; Matteo Tamburini; Christoph H. Keitel
Coppery inks paint an underwater rainbow
Coppery inks paint an underwater rainbow, Published online: 25 May 2018; doi:10.1038/d41586-018-05282-y
Inexpensive version of luminescent pigment shrugs off water. more
We generated cornea-specific plakoglobin (Jup; junctional plakoglobin) knockout mice in order to investigate the function of plakoglobin on the maintenance of the homeostasis of corneal epithelium in mice. Cornea epithelium-specific conditional knockouts (Jup
CEΔ/CEΔ ... more