My watch list
my.chemeurope.com  
Login  

Materials, Vol. 11, Pages 1096: Titanium Oxide (TiO2)/Polymethylmethacrylate (PMMA) Denture Base Nanocomposites: Mechanical, Viscoelastic and Antibacterial Behavior

Materials, Vol. 11, Pages 1096: Titanium Oxide (TiO2)/Polymethylmethacrylate (PMMA) Denture Base Nanocomposites: Mechanical, Viscoelastic and Antibacterial Behavior

Materials doi: 10.3390/ma11071096

Authors: Ali Alrahlah H. Fouad Mohamed Hashem Abdurahman A. Niazy Abdulhakim AlBadah

Currently, polymethylmethacrylate (PMMA) is the most popular denture base material. Most fractures of dentures that occur during function are due to its insufficient mechanical strength. The major drawbacks of PMMA are insufficient ductility, strength, and viscoelastic behavior. The purpose of this study was to evaluate a polymethylmethacrylate denture base material modified with TiO2 nanoparticles in terms of nanomechanical, creep-recovery, and relaxation. Additionally, the effects of addition TiO2 nanoparticles on the thermal and antimicrobial adhesion behaviors were investigated. Differential scanning calorimetry and thermogravimetric analysis indicated that the effect of small amounts of TiO2 nanoparticles (1 wt. %, 2 wt. %, and 3 wt. %) on the degradation behavior of PMMA denture bases was insignificant. The nanomechanical test results of the PMMA and PMMA/TiO2 nanocomposites indicated that the hardness and modulus in the nanoscale range improved due to TiO2 addition. At a 1200-nm penetration depth, the modulus increased by 10%, 16%, and 29% and hardness increased by 18%, 24%, and 35% with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. Furthermore, the creep-recovery and relaxation behaviors of PMMA were significantly improved due to the addition of TiO2. The creep strain decreased from 1.41% to 1.06%, 0.66%, and 0.49% with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. The relaxation test results showed that the initial stress under 1% strain improved to 19.9, 21.2, and 22 MPa with the addition of 1 wt. %, 2 wt. %, and 3 wt. % TiO2, respectively. The improvement in the nanohardness, modulus, creep recovery, and relaxation behavior of PMMA due to the addition of TiO2 nanoparticles indicated the role of the nanoparticles in increasing the PMMA matrix stiffness by reducing its mobility and free volume. TiO2 nanoparticles also improved the antimicrobial behavior of PMMA by significantly reducing bacterial adherence with increasing TiO2 ratio.

Authors:   Alrahlah, Ali ; Fouad, H. ; Hashem, Mohamed ; Niazy, Abdurahman A.; AlBadah, Abdulhakim
Journal:   Materials
Volume:   11
edition:   7
Year:   2018
Pages:   1096
DOI:   10.3390/ma11071096
Publication date:   27-Jun-2018
Facts, background information, dossiers
  • Addition
  • titanium oxides
  • thermogravimetric analysis
  • stress
  • nanocomposites
  • MPA
  • Matrix
  • fractures
  • ductility
More about Molecular Diversity Preservation International
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE