My watch list  

Sensors, Vol. 18, Pages 2113: A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery

Sensors, Vol. 18, Pages 2113: A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery

Sensors doi: 10.3390/s18072113

Authors: Huasheng Huang Yubin Lan Jizhong Deng Aqing Yang Xiaoling Deng Lei Zhang Sheng Wen

Weed control is necessary in rice cultivation, but the excessive use of herbicide treatments has led to serious agronomic and environmental problems. Suitable site-specific weed management (SSWM) is a solution to address this problem while maintaining the rice production quality and quantity. In the context of SSWM, an accurate weed distribution map is needed to provide decision support information for herbicide treatment. UAV remote sensing offers an efficient and effective platform to monitor weeds thanks to its high spatial resolution. In this work, UAV imagery was captured in a rice field located in South China. A semantic labeling approach was adopted to generate the weed distribution maps of the UAV imagery. An ImageNet pre-trained CNN with residual framework was adapted in a fully convolutional form, and transferred to our dataset by fine-tuning. Atrous convolution was applied to extend the field of view of convolutional filters; the performance of multi-scale processing was evaluated; and a fully connected conditional random field (CRF) was applied after the CNN to further refine the spatial details. Finally, our approach was compared with the pixel-based-SVM and the classical FCN-8s. Experimental results demonstrated that our approach achieved the best performance in terms of accuracy. Especially for the detection of small weed patches in the imagery, our approach significantly outperformed other methods. The mean intersection over union (mean IU), overall accuracy, and Kappa coefficient of our method were 0.7751, 0.9445, and 0.9128, respectively. The experiments showed that our approach has high potential in accurate weed mapping of UAV imagery.

Authors:   Huang, Huasheng ; Lan, Yubin ; Deng, Jizhong ; Yang, Aqing ; Deng, Xiaoling ; Zhang, Lei ; Wen, Sheng
Journal:   Sensors
Volume:   18
edition:   7
Year:   2018
Pages:   2113
DOI:   10.3390/s18072113
Publication date:   01-Jul-2018
Facts, background information, dossiers
More about Molecular Diversity Preservation International
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE