My watch list  

Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part I: Phase and Microstructure Evolution During the Ceramization Process

Polymer-derived SiOC/HfO2 ceramic nanocomposites were prepared via chemical modification of a commercially available polysilsesquioxane by hafnium tetra (n-butoxide). The ceramization process of the starting materials was investigated using thermal analysis and in situ Fourier-transformed infrared spectroscopy and mass spectrometry. Furthermore, solid-state NMR, elemental analysis, powder X-ray diffraction, and electron microscopy investigations were performed on ceramic materials pyrolyzed at different temperatures ranging from 800° to 1300°C, in order to obtain information about the structural changes and phase evolution thereof. The hafnium alkoxide-modified precursor was shown to convert into an amorphous single-phase SixHfyOzCw ceramic at temperatures up to 800°C. By increasing the temperature to 1000°C, amorphous hafnia begins to precipitate throughout the silicon oxycarbide matrix; thus, monodisperse hafnia particles with a diameter of <5 nm are present in the ceramic, indicating a homogeneous nucleation of HfO2. At temperatures ranging from 1100° to 1300°C, crystallization of the hafnia nanoprecipitates as well as phase separation of the SiOC matrix occur. The chemical modification of the preceramic precursor with hafnium alkoxide can be considered as a promising method for the preparation of SiOC/HfO2 nanocomposites with well-dispersed hafnia nanoparticles.

Authors:   Emanuel Ionescu, Benjamin Papendorf, Hans-Joachim Kleebe, Fabrizia Poli, Klaus Müller, Ralf Riedel
Journal:   Journal of the American Ceramic Society
Year:   2010
DOI:   10.1111/j.1551-2916.2010.03765.x
Publication date:   12-Apr-2010
More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE