My watch list
my.chemeurope.com  
Login  

Epoxy resin‐based ultrafine dry powder coatings for implants

ABSTRACT

Ultrafine dry powder coating technology creates biocompatible polymeric coatings for implants. Nanoparticles (nTiO2) modify flow to prevent agglomeration and create homogenous coatings. Since polyester‐based coatings require the potentially harmful 1,3,5‐triglycidyl isocyanurate (TGIC) curing agent, this study's objective was to develop alternative TGIC‐free formulations. Epoxy and epoxy/polyester (1:1) hybrid mixtures were enriched with CaO (5% w/w) and nTiO2 (0.5% w/w), as functional additives and flow modifiers, respectively. Epoxy‐TiO2 and Hybrid‐TiO2 mixtures were prepared with micron‐sized TiO2 (25% w/w) to enhance biocompatibility. Polymer chips and additives were combined in a high‐shear mixer and passed through a sieve (35 µm) to yield ultrafine particles that were sprayed (20 kV) onto metal sheets and cured (200 °C). Particle size analyses showed that all formulations were ultrafine (D 0.5 < 35 µm), and epoxy/polyester/TiO2 mixtures were the smallest (D 0.5 = 16.34 µm). Angles of repose, avalanche and resting indicated reduced flowability when epoxy was enriched with TiO2 and/or polyester, although all formulae were highly flowable. Elemental mapping of coatings showed a predominance of carbon (C) and oxygen (O) from resin polymer, and elevated titanium (Ti) in the TiO2 enriched surfaces. However, calcium (Ca) clusters were higher on the epoxy/polyester Hybrid coatings. Optical microscopy showed human mesenchymal cells (ATCC CRL‐1486) attached and spread out, and Alizarin Red staining showed mineral deposits in 2–4 week cultures, particularly on epoxy/polyester/TiO2 Hybrid surfaces. These epoxy resin‐based formulations were effective TGIC‐free substitutes for ultrafine dry powder coatings on implants. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43960.

Authors:   Nicholas Y. Hou, Jesse Zhu, Hui Zhang, Hiran Perinpanayagam
Journal:   Journal of Applied Polymer Science
Year:   2016
Pages:   n/a
DOI:   10.1002/app.43960
Publication date:   10-Jun-2016
More about Wiley
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE