My watch list
my.chemeurope.com  
Login  

Self-doping may be the key to superconductivity in room temperature

17-Nov-2014

Swedish materials researchers at Linköping and Uppsala University and Chalmers University of Technology, in collaboration with researchers at the Swiss Synchrotron Light Source (SLS) in Switzerland investigated the superconductor YBa2Cu3O7-x (abbreviated YBCO) using advanced X-ray spectroscopy.

YBCO is a well-known ceramic copper-based material that can conduct electricity without loss (superconductivity) when it is cooled below its critical temperature Tc=-183° C. Since the resistance and energy losses are zero in superconductors, there exist many technologically interesting and energy-saving electrical applications as well as benefits to the transport industry. Electromagnets in electric motors can be made smaller with stronger magnetic fields that are more powerful yet consume less energy; magnetic levitating trains that exploit superconductor technology can reach higher speeds by avoiding friction against rails.

On the other hand, the necessity of cooling these materials to low temperatures remains to be an obstacle one would like to eliminate. Therefore, one of the major objectives of superconductor research is trying to find a material that is superconducting at room temperature. However, the mechanism that underlies high-temperature superconductivity is still not entirely understood. In this work, the researchers have made a discovery that may shed new light on this phenomenon. X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) was used for measuring YBCO at room temperature and at -258° C, which is far below Tc.

What makes YBCO special as a superconductor is that it is made up of two types of structural units, i.e. stacked "planes" of copper oxide, assumed to carry the superconducting current, but also separate "chains" of copper oxide in between. The role of the chains in YBCO has puzzled scientists ever since the discovery of its superconducting properties in 1987. One had realized early on that Tc can be influenced in the material synthesis procedure by varying the "oxygen doping", and thus the length of the chains.

It has long been assumed that the doping level of the material was solely determined by the structure of the chains at the time of synthesis. By contrast, the new experimental results show that the chains in YBCO react to cooling by supplying the copper oxide planes with positive charge (electron-hole), a mechanism called self-doping. By combining RIXS and model calculations, the researchers also found that self-doping is accompanied by changes in the copper-oxygen bonds that link the planes with the chains.

This groundbreaking discovery of self doping in YBCO challenges the traditional understanding of the mechanism of superconductivity in copper-based high-temperature superconductors, which assumes a constant doping level in the copper oxide planes. Some previous temperature-dependent experiments will now have to be re-evaluated in this new light, and thereby help us come closer to finally solving the riddle of high temperature superconductivity. Next, the researchers plan to conduct a more detailed temperature dependent study to determine if restructuring and redistribution of the orbital occupation occurs exactly at the phase transition to superconductivity or if it already occurs at a higher temperature in the so-called pseudogap region.

Original publication:

M. Magnuson, T. Schmitt, V.N. Strocov, J. Schlappa, A.S. Kalabukhov and L.-C. Duda; "Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9."; Scientific Reports 4, 717 (2014).

Facts, background information, dossiers
  • Uppsala University
  • Linköping University
  • Chalmers University…
More about Linköping University
  • News

    Describing a widely used material

    LiU researcher Klas Tybrandt has put forward a theoretical model that explains the coupling between ions and electrons in the widely used conducting polymer PEDOT:PSS. The model has profound implications for applications in printed electronics, energy storage in paper, and bioelectronics. O ... more

    Spinning electrons open the door to future hybrid electronics

    A discovery of how to control and transfer spinning electrons paves the way for novel hybrid devices that could outperform existing semiconductor electronics. In a study published in Nature Communications, researchers at Linkoping University in Sweden demonstrate how to combine a commonly u ... more

    The world's first heat-driven transistor

    "We are the first in the world to present a logic circuit, in this case a transistor, that is controlled by a heat signal instead of an electrical signal," states Professor Xavier Crispin of the Laboratory of Organic Electronics, Linköping University. The heat-driven transistor opens the po ... more

More about Uppsala University
More about Chalmers University of Technology
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE