My watch list
my.chemeurope.com  
Login  

Lamellar structure



Lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transformation front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder) or eutectoid (such as pearlite) systems.

Additional recommended knowledge

Such conditions force phases of different composition to form but allow little time for diffusion to produce those phases' equilibrium compositions. Fine lamellae solve this problem by shortening the diffusion distance between phases, but their high surface energy makes them unstable and prone to break up when annealing allows diffusion to progress. A deeper eutectic or more rapid cooling will result in finer lamellae; as the size of an individual lamellum approaches zero, the system will instead retain its high-temperature structure. Two common cases of this include cooling a liquid to form an amorphous solid, and cooling eutectoid austenite to form martensite.

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Lamellar_structure". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE