To use all functions of this page, please activate cookies in your browser.

my.chemeurope.com

With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.

- My watch list
- My saved searches
- My saved topics
- My newsletter

## Resolved sideband cooling
## Additional recommended knowledgeA cold trapped atom can be treated to a good approximation as a quantum mechanical harmonic oscillator. If the spontaneous decay rate is much smaller than the vibrational frequency of the atom in the trap, the energy levels of the system can be resolved as consisting of internal levels each corresponding to a ladder of vibrational states. Suppose a two-level atom whose ground state is shown by ω = ω where ω , where represents the state of an ion whose internal atomic state is Subsequent spontaneous emission occurs predominantly at the carrier frequency if the recoil energy of the atom is negligible compared with the vibrational quantum energy i.e.
The average effect of this mechanism is cooling the ion by one vibrational energy level. When these steps are repeated a sufficient number of times is reached with a high probability. ## See alsoCategories: Atomic physics | Plasma physics |

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Resolved_sideband_cooling". A list of authors is available in Wikipedia. |