My watch list
my.chemeurope.com  
Login  

Twisted nematic field effect



The twisted nematic effect (TN-effect) in liquid crystals is claimed to be first discovered by James Fergason in 1970 at the International Liquid Xtal Company in Kent Ohio. Fergason patented his work at about the same time that the Central Research Laboratories of Hoffmann-LaRoche (Switzerland) did (US patent 3,731,986 indicates April 22, 1971 as date of filing). Hoffmann-LaRoche scientists Wolfgang Helfrich and Martin Schadt are listed as inventors in a patent application that was filed for the twisted nematic field effect in Switzerland on December 4, 1970 (see CH532261). Fergason sued the company and his patent held up in court; he later sold the patent for $1 million in cash, half of all US royalties, and a smaller percentage of international royalties. This electro-optical effect is thus also called Schadt–Helfrich effect, best known however as TN-effect.

Contents

Background

Contrary to displays based on the dynamic scattering mode in nematic liquid crystals, TN-cells did not require a current to flow for operation and did not require operating voltages of 40V and more. Thus, the TN-effect formed the basis for alpha-numeric displays with acceptable contrast at low driving voltages (without current flow) that could be used in portable devices (e.g. pocket calculators, wrist watches, etc.).

Principle of operation

The main breakthrough in the development of liquid crystal displays (LCDs) was the invention, patenting and publication [1] of the twisted nematic (TN)-effect by M. Schadt and W. Helfrich (see CH532261) with the priorty date of December 4, 1970). The twisted nematic field effect, developed in the Central Research Laboratories of Hoffmann-La Roche (Switzerland), marks a paradigm change in flat panel display technology. In contrast to displays based on dynamic scattering (dynamic scattering mode LCDs, DSM-LCDs or DS-LCDs) or light emitting diodes (LEDs), which are current-driven and therefore power-consuming devices, the twisted nematic effect is based on the precisely controlled realignment of liquid crystal molecules between different ordered molecular configurations under the action of an applied electric field. This is essentially achieved without power consumption and at low operating voltages. The new effect required the liquid crystal molecules to be twisted in the OFF-state. Moreover, it required two light-absorbing polarizers, a controlled surface alignment and novel liquid crystal materials (LCs) for its operation. The major technological trends of LEDs, DS-LCDs, cathode ray tubes (CRTs), etc. at the time were against the new field-effect display technology.

 

The illustrations to the right show both the OFF and the ON-state of a single picture element (pixel) of a twisted nematic light modulator in transmissive mode of operation. A twisted configuration of nematic liquid crystal molecules is formed between two glass plates, G, which are separated by several micrometer wide spacers and coated with transparent electrodes, E1, E2. The electrodes themselves are coated with alignment layers (not shown) to assure uniform uniaxial alignment of the elongated birefringent liquid crystal molecules with the directions of alignment on both glass substrates rotated by 90°. As a consequence of this boundary induced twisted alignment and the long-range molecular interactions, a continuous helical twist deformation is achieved in the OFF-state of the liquid crystal layer (left diagram).

If the birefringence is properly chosen, the polarization of an incident linearly polarized light wave is then guided by the liquid crystal helix. The transmitted wave may therefore pass the second, crossed polarizer, P1, causing the modulator to appear transparent. Apart from their special optical properties, the elongated nematic liquid crystal molecules designed for the twisted nematic effect comprise longitudinal (permanent) dipole moments. These act as sensors for electric fields causing their long axes to align parallel to the direction of the electric field. Therefore, if a voltage above a threshold voltage of about 1 volt is applied to the electrodes of the twisted nematic LC-layer, the electrical field forces the long molecular axes to align in the field direction, i.e. perpendicular to the electrodes. As a result, the twist deformation is completely unwound several volts above threshold (right diagram). Now, the polarization of an incident light wave is not affected by the vertically aligned LC-molecules and therefore it cannot not pass the second polarizer. In this ON-state the modulator appears dark (non-transparent). Obviously, the inverse optical response can be obtained with parallel polarizers. Moreover, gray-scale modulation is achieved by varying the voltage between the threshold for helix deformation and the saturation voltage. It is interesting to note that helix deformation and corresponding gray scale response are governed by elastic and dielectric forces of the liquid crystal helix; i.e. by liquid crystal material parameters and aligning anchoring forces.

To display information with a twisted nematic liquid crystal light modulator, the transparent electrodes are structured by photo-lithography. For low information content numerical and alpha-numerical TN-LCDs as they are required for digital watches, pocket calculators or other simple machine-man interfaces, segmented electrodes are sufficient. All segments are placed on one substrate of the display with a common counter electrode at the opposite substrate and are addressed individually. If more complex data or graphics information have to be displayed, a matrix arrangement of electrodes is used. Obviously, addressing of matrix displays, such as in LCD-screens for computer-monitors or flat television screens, is more complex than with segmented electrodes. These matrix LCDs necessitate integration of additional non-linear electronic elements into each picture element of the display (e.g. thin-film diodes, TFDs, or thin-film transistors, TFTs). .

 

Apart from well controlled 3D surface alignment at the electrode boundaries, the twisted nematic effect requires not only one but two light absorbing linear polarizers that strongly reduce the transmittance (and thus the perceived brightness) of TN-LCDs. In the 1960s the twisted nematic effect was against the dominant trend in the small liquid crystal community which searched for electro-optical effects enabling bright, polarizer-free, high contrast, easy-to-manufacture and cost-effective solutions. A new superior electro-optical effect would have to overcome the limited contrast of the polarizer free dynamic scattering effect (DS, DSM). It should also be unhampered by the poor contrast of guest-host displays which required one polarizer and absorbed more than 50% of the incident light. To avoid polarizers, some researchers suggested in 1968 to dissolve dichroic dyes in a twisted nematic host such that maximum dye absorption would result without a polarizer. They were of the opinion that the incident unpolarized light would traverse the liquid crystal without rotation of the direction of polarization, thus being completely absorbed in a 90°-twisted host. Contrary to Schadt and Helfrich, they failed to realize the complexity of twisted nematic configurations due to wave-guiding and polarization rotation in 1968. Because operation of twisted nematic displays requires liquid crystal molecules with strong dipole moments along their long axes, fast response times, wide temperature ranges, proper elastic and optical constants, new classes of liquid crystal materials had to be invented and developed [2].

Sources

  • Martin Schadt, personal communication, 2006/2007
  • Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects", Information No. 118, October 2005, issued by Internationale Treuhand AG, Basel, Geneva, Zurich. Published in German
  • David A. Dunmur and Horst Stegemeyer: "Crystals that Flow: Classic papers from the history of liquid crystals", Compiled with translation and commentary by Timothy J. Sluckin (Taylor and Francis 2004), ISBN 0-415-25789-1, History of Liquid Crystals Homepage
  • Rolf Bucher: "Wie Schweizer Firmen aus dem Flüssigkristall-Rennen fielen", Das Schicksal von Roche und BBC-Entwicklungen in zehn Abschnitten", Neue Zürcher Zeitung, Nr.141 56 / B12, 20.06.2005
  • Werner Becker, Hans-Juergen Lemp: "100 years of Commercial Liquid Crystal Materials", Information Display 2, 2004
  • Merck KGaA, Corporate Communications: "100 years of Liquid Crystals at Merck: The history of the future." March 2004, Merck KGaA, Darmstadt, Germany
  • Werner Becker (editor): "100 years Liquid Crystals", Liquid Crystal Newsletter No. 19, 2004, Merck KGaA, Darmstadt, Germany
  • Michael Heckmeier, et al.: "Liquid Crystals for Active Matrix Displays", Merck KGaA, Darmstad, Germany
  • Merck KGaA, Corporate Communications: "Liquid Crystals: Merck Makes Bits & Bytes Visible", Merck KGaA, Darmstad, Germany

References

  1. ^ M. Schadt and W. Helfrich: Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Lett. 18 (1971), pp. 127-128
  2. ^ George W. Gray, Stephen M. Kelly: "Liquid crystals for twisted nematic display devices", J. Mater. Chem., 1999, 9, 2037–2050
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Twisted_nematic_field_effect". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE