My watch list
my.chemeurope.com  
Login  

A new laser paradigm: An electrically injected polariton laser

17-05-2013: Engineering researchers at the University of Michigan have demonstrated a paradigm-shifting "polariton" laser that's fueled not by light, but by electricity.

Polaritons are particles that are part light, and part matter.

"We report the first electrically injected polariton laser—a truly transformative result," said Pallab Bhattacharya, the Charles M. Vest Distinguished University Professor of Electrical Engineering and Computer Science and the James R. Mellor Professor of Engineering, whose paper on the work is published online in Physical Review Letters.

"Since the proposal of such a device in 1996, researchers around the world have been trying to demonstrate it. It is no longer a scientific curiosity. It's a real device."

The new device requires at least 1,000 times less energy to operate, compared with a conventional laser, Bhattacharya says. He envisions its eventual use in any application where a laser is used today, such as in the optical communication field for wired Internet and in the medical field for surgery.

And as transistors—the building blocks of computers—reach their fundamental size limit over the coming decade, Bhattacharya says lasers like this one that are low-power and easier to modulate could play new roles in consumer electronics.

"Some of the communication on the chip and from chip to chip is going to move to optical communication, or lasers," Bhattacharya said.

Technically, "laser" is a misnomer for the new device. The word is actually an acronym for Light Amplification by Stimulated Emission of Radiation. A polariton laser produces a coherent beam of light in a different way.

"The physical process is Light Amplification by Stimulated Scattering of Polaritons," Bhattacharya said.

The researchers generated polaritons by using electricity to excite samples of the semiconductor gallium arsenide in a microcavity under certain conditions. The polaritons quickly decayed by transferring their energy to photons, which, due to properties of the original polaritons, escaped the cavity as a single-colored beam of light.

"Our success is based on two novel features," Bhattacharya said. "First, we deployed additional electron-polariton scattering to enhance the relaxation of polaritons to form the coherent ground state. Second, we applied a magnetic field so that more carriers can be injected with the bias current without losing the required conditions for polariton lasing."

This laser must be at cryogenic temperatures to operate, but Bhattacharya and his colleagues are working on a room temperature version.

Facts, background information, dossiers
  • building blocks
  • amplification
  • gallium arsenide
More about University of Michigan
  • News

    Pinwheel 'living' crystals and the origin of life

    Simply making nanoparticles spin coaxes them to arrange themselves into what University of Michigan researchers call 'living rotating crystals' that could serve as a nanopump. They may also, incidentally, shed light on the origin of life itself. The researchers refer to the crystals as 'liv ... more

    Microparticles show molecules their way

    A team of researchers of Karlsruhe Institute of Technology (KIT) and the University of Michigan/USA has produced novel microparticles, whose surface consists of three chemically different segments. These segments can be provided with different (bio-) molecules. Thanks to the specific spatia ... more

    Chemical chaperones have helped proteins for billions of years

    An ancient chemical, present for billions of years, appears to have helped proteins function properly since time immemorial. Proteins are the body's workhorses, and like horses they often work in teams. There exists a modern day team of multiple chaperone proteins that help other proteins f ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE