My watch list
my.chemeurope.com  
Login  

Improving silver nanowires for FTCEs with flash light interactions

06-Apr-2017

KAIST

This image shows flash-induced plasmonic interactions with nanowires to improve silver nanowires (Ag NWs).

Flexible transparent conducting electrodes (FTCEs) are an essential element of flexible optoelectronics for next-generation wearable displays, augmented reality (AR), and the Internet of Things (IoTs). Silver nanowires (Ag NWs) have received a great deal of attention as future FTCEs due to their great flexibility, material stability, and large-scale productivity. Despite these advantages, Ag NWs have drawbacks such as high wire-to-wire contact resistance and poor adhesion to substrates, resulting in severe power consumption and the delamination of FTCEs.

A Korean research team led by Professor Keon Jae Lee of the Materials Science and Engineering Department at KAIST and Dr. Hong-Jin Park from BSP Inc., has developed high-performance Ag NWs (sheet resistance ~ 5 Ω/sq, transmittance 90 % at λ = 550 nm) with strong adhesion on plastic (interfacial energy of 30.7 J?m-2) using flash light-material interactions.

The broad ultraviolet (UV) spectrum of a flash light enables the localized heating at the junctions of nanowires (NWs), which results in the fast and complete welding of Ag NWs. Consequently, the Ag NWs demonstrate six times higher conductivity than that of the pristine NWs. In addition, the near-infrared (NIR) of the flash lamp melted the interface between the Ag NWs and a polyethylene terephthalate (PET) substrate, dramatically enhancing the adhesion force of the Ag NWs to the PET by 310 %.

Professor Lee said, "Light interaction with nanomaterials is an important field for future flexible electronics since it can overcome thermal limit of plastics, and we are currently expanding our research into light-inorganic interactions."

Meanwhile, BSP Inc., a laser manufacturing company and a collaborator of this work, has launched new flash lamp equipment for flexible applications based on the Prof. Lee's research.

Original publication:

Daniel J. Joe , Seungjun Kim , Jung Hwan Park , Dae Yong Park , Han Eol Lee , Tae Hong Im , Insung Choi , Rodney S. Ruoff , Keon Jae Lee; "Laser–Material Interactions for Flexible Applications"; Adv. Mater.; 2017

Facts, background information, dossiers
  • silver nanowires
  • materials science
  • light
  • flexible transparen…
  • flexible optoelectronics
  • optoelectronics
More about Korea Advanced Institute of Science and Technology
  • News

    Mussel research strenghtens graphene

    Researchers demonstrated the mussel-inspired reinforcement of graphene fibers for the improvement of different material properties. A research group under Professor Sang Ouk Kim applied polydopamine as an effective infiltrate binder to achieve high mechanical and electrical properties for g ... more

    Flexible blue vertical micro LEDs developed

    A KAIST research team developed a crucial source technology that will advance the commercialization of micro LEDs. Professor Keon Jae Lee from the Department of Materials Science and Engineering and his team have developed a low cost production technology for thin-film blue flexible vertica ... more

    50x more stable adsorbent produced

    A KAIST research team developed a technology to increase the stability of amine-containing adsorbents by fifty times, moving one step further toward commercializing stable adsorbents that last longer. Professor Minkee Choi from the Department of Chemical and Biomolecular Engineering and his ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE