My watch list
my.chemeurope.com  
Login  

Improving silver nanowires for FTCEs with flash light interactions

06-Apr-2017

KAIST

This image shows flash-induced plasmonic interactions with nanowires to improve silver nanowires (Ag NWs).

Flexible transparent conducting electrodes (FTCEs) are an essential element of flexible optoelectronics for next-generation wearable displays, augmented reality (AR), and the Internet of Things (IoTs). Silver nanowires (Ag NWs) have received a great deal of attention as future FTCEs due to their great flexibility, material stability, and large-scale productivity. Despite these advantages, Ag NWs have drawbacks such as high wire-to-wire contact resistance and poor adhesion to substrates, resulting in severe power consumption and the delamination of FTCEs.

A Korean research team led by Professor Keon Jae Lee of the Materials Science and Engineering Department at KAIST and Dr. Hong-Jin Park from BSP Inc., has developed high-performance Ag NWs (sheet resistance ~ 5 Ω/sq, transmittance 90 % at λ = 550 nm) with strong adhesion on plastic (interfacial energy of 30.7 J?m-2) using flash light-material interactions.

The broad ultraviolet (UV) spectrum of a flash light enables the localized heating at the junctions of nanowires (NWs), which results in the fast and complete welding of Ag NWs. Consequently, the Ag NWs demonstrate six times higher conductivity than that of the pristine NWs. In addition, the near-infrared (NIR) of the flash lamp melted the interface between the Ag NWs and a polyethylene terephthalate (PET) substrate, dramatically enhancing the adhesion force of the Ag NWs to the PET by 310 %.

Professor Lee said, "Light interaction with nanomaterials is an important field for future flexible electronics since it can overcome thermal limit of plastics, and we are currently expanding our research into light-inorganic interactions."

Meanwhile, BSP Inc., a laser manufacturing company and a collaborator of this work, has launched new flash lamp equipment for flexible applications based on the Prof. Lee's research.

Original publication:

Daniel J. Joe , Seungjun Kim , Jung Hwan Park , Dae Yong Park , Han Eol Lee , Tae Hong Im , Insung Choi , Rodney S. Ruoff , Keon Jae Lee; "Laser–Material Interactions for Flexible Applications"; Adv. Mater.; 2017

Facts, background information, dossiers
  • silver nanowires
  • materials science
  • light
  • flexible transparen…
  • flexible optoelectronics
  • optoelectronics
More about Korea Advanced Institute of Science and Technology
  • News

    Fiber OLEDs, thinner than a hair

    Professor Kyung Cheol Choi from the School of Electrical Engineering and his team succeeded in fabricating highly efficient Organic Light-Emitting Diodes (OLEDs) on an ultra-thin fiber. The team expects the technology, which produces high-efficiency, long-lasting OLEDs, can be widely utiliz ... more

    New arylation inducing reaction developed

    KAIST researchers have identified a reaction mechanism that selectively introduces aryl groups at the desired position of a molecule at room temperature. A team, co-led by Professor Sukbok Chang and Mu-Hyun Baik of the Department of Chemistry, used an iridium catalyst for the reaction. The ... more

    Battery breakthrough using 2016 Nobel Prize molecule

    Silicon anodes are receiving a great deal of attention from the battery community. They can deliver 3~5-times higher capacities compared with those using current graphite anodes in lithium ion batteries. A higher capacity means longer battery use per charge, which is particularly critical i ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE