My watch list
my.chemeurope.com  
Login  

Atomic vapor laser isotope separation



  AVLIS Is an acronym which stands for atomic vapor laser isotope separation and is a method by which specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions.

Additional recommended knowledge

In the largest technology transfer in U.S. government history, in 1994 the AVLIS process was transferred to the United States Enrichment Corporation for commercialization. However, on June 9, 1999 after a $100 million investment, USEC cancelled its AVLIS program.

The AVLIS process provides high energy efficiency comparable with gas centrifuges, high separation factor, and low volume of radioactive waste.

AVLIS continues to be developed by some countries and it presents some specific challenges to international monitoring ([1]). Iran is now known to have had a secret AVLIS program. However, since it was uncovered in 2003, Iran has claimed to have dismantled it ([2],[3]).

Similar technology, using molecules instead of atoms, is the molecular laser isotope separation, MLIS.

Principle

The absorption lines of 235U and 238U differ slightly due to hyperfine structure; for example, the 238U absorption peak shifts from 502.74 nanometers to 502.73 nm in 235U. AVLIS uses tunable dye lasers, which can be precisely tuned, so that only 235U absorbs the photons and selectively undergoes excitation and then photoionization. The ions are then electrostatically deflected to a collector, while the neutral unwanted uranium-238 passes through.

The AVLIS system consists from a vaporizer and a collector, forming the separation system, and the laser system. The vaporizer produces a stream of pure gaseous uranium.

The laser commonly used is a two-stage tunable pulsed dye laser usually pumped by a copper vapor laser; the master oscillator is low-power but highly precise, and its power is increased by a dye laser amplifier acting as optical amplifier. Three frequencies ("colors") of lasers are used for full ionization of uranium-235. [4]

References

    • Petr A. Bokhan, Vladimir V. Buchanov, Nikolai V. Fateev, Mikhail M. Kalugin, Mishik A. Kazaryan, Alexander M. Prokhorov, Dmitrij E. Zakrevskii: Laser Isotope Separation in Atomic Vapor. Wiley-VCH, Berlin, August 2006, ISBN 3-527-40621-2

    See also

     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Atomic_vapor_laser_isotope_separation". A list of authors is available in Wikipedia.
    Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE