My watch list
my.chemeurope.com  
Login  

Catalyst for pressure swing adsorption



Pressure Swing Adsorption (PSA) processes rely on the fact that under pressure gases tend to be attracted to solid surfaces, or adsorbed. The higher the pressure, the more gas is adsorbed; when the pressure is reduced, the gas is released, or desorbed. PSA processes can be used to separate gases in a mixture because different gases tend to be attracted to different solid surfaces more or less strongly. If a gas mixture such as air, for example, is passed under pressure through a vessel containing an adsorbent bed that attracts nitrogen more strongly than it does oxygen, part or all of the nitrogen will stay in the bed, and the gas coming out of the vessel will be enriched in oxygen. When the bed reaches the end of its capacity to adsorb nitrogen, it can be regenerated by reducing the pressure, thereby releasing the adsorbed nitrogen. It is then ready for another cycle of producing oxygen enriched air.

This is exactly the process used in portable oxygen generators used by emphysema patients and others who require oxygen enriched air to breath.

Aside from their ability to discriminate between different gases, adsorbents for PSA systems are usually very porous materials chosen because of their large surface areas. Typical adsorbents are activated carbon, silica gel, alumina and zeolite. Though the gas adsorbed on these surfaces may consist of a layer only one or at most a few molecules thick, surface areas of several hundred square meters per gram enable the adsorption of a significant portion of the adsorbent's weight in gas. In addition to their selectivity for different gases, zeolites and some types of activated carbon called carbon molecular sieves may utilize their molecular sieve characteristics to exclude some gas molecules from their structure based on the size of the molecules, thereby restricting the ability of the larger molecules to be adsorbed.

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Catalyst_for_pressure_swing_adsorption". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE