My watch list  

Formation evaluation gamma ray

In the field of formation evaluation, gamma ray log records natural radioactivity emission of formation. Measurement of natural emission of gamma rays in oil and gas wells are particularly helpful because shales and sandstones typically have different gamma ray signatures. Shales and clays are responsible for most natural radioactivity, so gamma ray log often is a good indicator of such rocks. In addition, the log is also used for correlation between wells, for depth correlation between open and cased holes, and for depth correlation between logging runs.



Natural radioactivity is the spontaneous decay of the atoms of certain isotopes into other isotopes. If the resultant isotopes is not stable, it will further undergo further decay until finally a stable isotope is formed. The decay process usually accompanied by emission of alpha, or beta particles, gamma rays. Natural gamma ray radiation is one form of spontaneous radiation emitted by unstable nuclei.

An alpha (α) particle may be emitted from an atomic nucleus during radioactive decay. It is positively charged and has two protons and two neutrons. It is physically identical to the nucleus of the helium atom. Alpha particles have very low penetrative power and at normal temperature and pressure can only penetrate most materials to only a few tens of micrometers.

A beta (β) particle may be emitted from an atomic nucleus during radioactive decay, which is physically identical to the electron. It may be positively charged (positron) or negatively charged (electron). Beta particles have higher penetration power than alpha, and depend on the kinetic energy of the electron / positron.

Gamma (γ) radiation may be considered as an electromagnetic wave similar to visible light or X-rays, or as a particle of photon. Gamma rays are electromagnetic radiations emitted from an atomic nucleus during radioactive decay, with the wavelength in the range of 10-9 to 10-11cm

Natural radioactivity in rocks

  Elements other than hydrogen, whether stable or unstable, have been formed in very hot and high pressure environments. Isotopes naturally found on earth are usually those which are stable or which have a decay time larger than, or at least a significant fraction of the age of the earth (about 5 x 109 years). Isotopes with shorter halflifes mainly exist as decay products from longer lived isotopes and as in C14 from irradiation of the upper atmosphere.

Radioisotopes with a sufficiently long halflife, and whose decay produces an appreciable amount of gamma rays are:

  • Potassium 40K with half life of 1.3 x 109 years, which emits 0 α, 1 β, and 1 γ-ray
  • Thorium 232Th with half life of 1.4 x 1010 years, which emits 7 α, 5 β, and numerous γ-ray with different energies
  • Uranium 238U with half-life of 4.4 x 109 years, which emits 8 α, 6 β, and numerous γ-ray with different energies

Each of these elements emits gamma-rays with distinctive energy. Figure 1 shows the energies of emitted gamma-ray from the three main isotopes. Potassium 40 decays directly to stable argon 40 with the emission of 1.46 MeV gamma-ray. Uranium 238 and thorium 232 decay sequentially through a long sequence of various isotopes until a final stable isotope. The spectrum of the gamma-rays emitted by these two isotopes consists of gamma-ray of many different energies and form a complete spectra. The peak of thorium series can be found at 2.62 MeV and the Uranium series at 1.76 MeV.


The most common sources of natural Gamma-rays are Potassium, Thorium, and Uranium. These elements are found in feldspars (ie. granites, feldspathic), volcanic and igneous rocks, sands containing volcanic ash, and clays.

Gamma-ray measurement has the following applications:

  • Well to well correlation: Gamma-ray log fluctuates with changes in formation mineralogy. As such, gamma-ray logs from different wells within the same field or region can be very useful for correlation purposes, because similar formation will show similar features.
  • Logging runs correlation: Gamma-ray tools is typically run in every logging tools runs in a well. Being a common measurement, logging data can be put on depth with each other by correlating the gamma-ray feature of each run.
  • Quantitative evaluation of shaliness: Since natural radioactive elements tend to have greater concentration in shales than in other sedimentary lithologies, the total gamma ray measurement is frequently used to derive a shale volume (Ellis-1987, Rider-1996). This method however, is only likely to be use in a simple sandstone-shale formation, and is subject to error when radioactive elements are present in the sand.


Gamma-ray detected by Gamma-ray detector in an oil or gas wells, is not only a function of radioactivity of the formations, but also other factors as follows:

  • Borehole Fluid: the influence of borehole fluid depends on its volume (ie hole size), the position of the tool, its density, and composition. KCl in mud, for example, will invade permeable sections, with the net result of increase in gamma ray activity.
  • Tubing, Casing, etc: Their effect depend on the thickness, density, and nature of the materials (eg. steel, aluminum). All steel reduces the gamma-ray level, but can be corrected once the density and thickness of the casing, cement sheath and borehole fluid are known.
  • Cement: Its impact is determined by the type of cement, additives, density and thickness
  • Bed Thickness: Gamma-ray reading will not reflect the true value in a bed whose thickness is less than the diameter of the sphere of investigation. In a series of thin beds, the log reading will be a volume average of the contributions within the sphere.

In addition, all radioactive phenomena are random in nature. Count rates vary about a mean value, and counts must be accumulated over a period of time and averaged in order to obtain a reasonable estimate of the mean. The longer the averaged period and the higher the count rate, the estimate of mean will be more precise.

Sample of corrections required for different gamma-ray tools are available from Schlumberger.

Measurement technique

Older Gamma-ray detectors use the Geiger-Mueller counter principle, but has been mostly replaced thallium-doped Sodium-Iodide (NaI) scintillation detector, which has a higher efficiency. NaI detectors are usually composed of a NaI crystal coupled with a photomultiplier. When Gamma-ray from formation enters the crystal, it undergoes successive collisions with the atoms of the crystal, resulting in a short flashes of light when the gamma-ray is absorbed. The light is detected by the photomultiplier, which converts the energy into an electric pulse with amplitude proportional to the gamma-ray energy. The number of electric pulses is recorded in counts per seconds (CPS). The higher the gamma-ray count rate, the larger the clay content and vice versa.

Primary calibration of Gamma-ray tool is the test pit at the University of Houston. The artificial formation simulate about twice the radioactivity of a shale, which generates 200 API units of Gamma-rays. The detector crystal is affected by hydration and it's response changes with time. Consequently, a secondary and a field calibration is achieved with a portable jig carrying a small radioactive source.

See also

  • Gamma Ray Logging
  • Gamma Ray
  • Formation evaluation


  • Ellis, D.V., 1987, "Well logging for earth scientists", Elsevier, Amsterdam.
  • Rider, M., 1996, "The Geological Interpretation of Well Logs", Caithness
  • O. & L. Serra, 2004, "Well Logging - Data Acquisition and Applications", ISBN 978295156125
  • Schlumberger, February 1999, "Log Interpretation Principles / Applications"
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Formation_evaluation_gamma_ray". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE