My watch list
my.chemeurope.com  
Login  

Geothermal exchange heat pump



A geothermal exchange heat pump, also known as a ground source heat pump (GSHP), is a heat pump that uses the Earth as either a heat source, when operating in heating mode, or a heat sink, when operating in cooling mode. See also ASHP or air source heat pump, which uses another type of geothermal exchange.

Heat pumps move heat from a source to a sink. With GSHPs, the source is the ground, and the sink is the house or other object to which the heat is being transferred. They use the same basic system as a refrigerator, which transfers heat from the inside of the refrigerator (the 'source') to the outside (the 'sink').

Heat pumps are characterised by two loops, the 'source' or external (ground) loop, and the 'sink' or internal (building) loop, each containing refrigerant. These loops can deliver heating and cooling directly to ground or building or, via heat exchangers, through secondary loops containing water (or an antifreeze mixture with water and propylene glycol, denatured alcohol or methanol). Secondary loops are popular for ground use because they are not pressurized, so cheap plastic tubing can be used, and because they reduce the amount of expensive refrigerant required. Air source heat pumps use the same principle but extract the heat from the air, rather than the ground. As such, their installation is much simpler and cheaper. However, ASHP systems are significantly less useful in climates that are very hot or very cold for sustained periods, tipping the scale in favor of the GSHP solution.[citation needed]

Geothermal heat pumps use one of the following types of external loop:

  • open loop
  • closed vertical loop
  • closed horizontal loop.

In an open loop system the thermal transfer fluid (water) does not return and is a 'once through' type system. This system draws water from a well or lake, passes it through a heat exchanger in the building, and then discharges it. The water can be discharged to a stream or lake, or injected into a second well. Deep lake water cooling uses a similar process with an open loop for air conditioning and cooling.

The closed vertical loop system uses a single well (or borehole) with the fluid in the pipe constantly recirculated to and from the well. If a borehole is used, it is commonly filled with a bentonite grout surrounding the pipe to provide a good thermal connection to the surrounding soil or rock.

The closed horizontal loop is placed below the frostline (1 to 2 m underground). In a horizontal closed loop system the pipe is often laid out as a helix to increase the contact area per length.

The amount of vertical or horizontal loop required is a function of the ground formation thermal conductivity, deep earth temperature, and heating and cooling power needed, and also depends on the balance between the amount of heat rejected to and absorbed from the ground during the course of the year. A rough approximation of the soil temperature is the average daily temperature for the region.

Geothermal heat pumps are also used in non-residential buildings, but the variety of loads and load patterns in these applications make it difficult to specify rules of thumb for capacity per unit of building area, or quantity of heat exchanger required per unit of heat pump capacity. In commercial applications a field of bore holes is drilled. Bore holes are spaced 5–6 m apart and are generally 15 m deep per kW of cooling. During the cooling season, the local temperature rise in the bore field is influenced most by the moisture travel in the soil. Reliable heat transfer models have been developed through sample bore holes as well as other tests.

Heat pumps are especially well matched to underfloor heating systems which do not require extremely high temperatures (as compared with wall-mounted radiators). Thus they are ideal for open plan offices. Using large surfaces such as floors, as opposed to radiators, distributes the heat more uniformly and allows for a lower temperature heat transfer fluid.

The Earth below the frost line remains at a relatively constant temperature year round. This temperature equates roughly to the average annual air-temperature of the chosen location, so is usually 7-21 degrees Celsius (45-70 degrees Fahrenheit) depending on location. Because this temperature remains constant, geothermal heat pumps perform with far greater efficiency and in a far larger range of extreme temperatures than conventional air conditioners and furnaces.

To understand how a heat pump can heat during the winter and cool during the summer, let us consider each mode:

Additional recommended knowledge

Contents

Heating mode

  In heating mode, the external fluid is pumped from the well at 8-16 degrees Celsius and passes through the heat exchange unit. Within the heat exchanger, the refrigerant expands and changes from liquid into gas. This absorbs heat (latent heat of vaporization) from the external fluid, thereby cooling the external fluid. Meanwhile the refrigerant is pumped to the compressor where it is pressurized thereby becoming superheated. This 'hot gas' releases the heat and warms the air of the house. At the same time, the refrigerant gas loses heat to the air and changes back to a liquid. The external loop again provides the heat necessary to change the refrigerant back into a gas thereby cooling the external fluid. The external fluid absorbs heat from the soil and the process is repeated. Note the external fluid only changes temperature while the internal refrigerant changes both temperature and phase. There are some residential heat pumps that use refrigerant in the external loop.

Cooling mode

The cooling cycle is very similar except a valve on the internal refrigerant loop reverses the direction of flow. Now the compressed refrigerant coming from the compressor heats the external fluid, before passing through the evaporator where it vaporizes taking up heat from the air in the house. The heated external fluid is pumped into the ground where it is cooled and recirculated. Alternatively, the superheated refrigerant may pass through a second heat exchanger allowing the water heater to absorb the waste heat. This means that in summer, the heat pump provides air conditioning and the hot water. The heat is being pumped from the air in the house to the water in the water heater.


Costs and Savings

The initial cost of installing a Geothermal Heat Pump system is usually quite high and can range from $5,000 to $12,000 for a 2,000 sq. ft. home. However the average cost of most systems is around $20,000. The cost of installation is impacted by the geology of the area, size of the home and location of the home/property. The system can save the average family from $400-$1,400/year, reducing the average heating/cooling costs by 35-70% per household. In many countries, the cost of a system can be mitigated by governmental programs such as tax credits. [1]

References

  1. ^ Geothermal Energy Investing. Retrieved on 2007-09-09.


See also

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Geothermal_exchange_heat_pump". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE