My watch list  


[[Image:{{{image name}}}|160px|center|H-1NF]]
Type: Heliac
Major radius: 1 m
Minor radius: 0.2 m
Magnetic field: 0.5T
Max. temperature: {{{max temp}}}
Max. pressure: {{{max pressure}}}
Max. confinement time: {{{max confinement time}}}
First plasma: 1992
Location: Canberra, Australia

The H-1 flexible Heliac is a three field-period helical axis stellarator located in the Research School of Physical Sciences and Engineering at the Australian National University. Optimisation of the H-1 power supplies for low current ripple allows precise control of the ratio of secondary (helical, vertical) coil to primary (poloidal, toroidal) coil currents, resulting in a finely tunable magnetic geometry. Slight variation in the current ratio between shots (plasma discharges) in a sequence corresponds to a high resolution parameter scan through magnetic configurations (ie: rotational transform profile, magnetic well). The programmable control system allows for repetition rates of around 30 shots per hour, limited by data acquisition time and magnet cooling time.

Additional recommended knowledge

Stated objectives

  • Provide a high-temperature plasma national facility of international standing on a scale appropriate to Australia's research budget.
  • Provide a focus for national and international collaborative research, make significant contributions to the global fusion research effort and increase the Australian presence in the field of plasma fusion power into the next century.
  • Gain a detailed understanding of the basic physics of hot plasma which is magnetically confined in the helical-axis stellarator configuration.
  • Develop advanced plasma measurement systems ("diagnostics"), integrating real-time processing and multi-dimensional visualization of data.

Fusion power
v  d  e

Atomic nucleus | Nuclear fusion | Nuclear power | Nuclear reactor | Timeline of nuclear fusion | Plasma physics | Magnetohydrodynamics | Neutron flux | Fusion energy gain factor | Lawson criterion

Methods of fusing nuclei

Magnetic confinement: – Tokamak – Spheromak – Stellarator – Reversed field pinch – Field-Reversed Configuration – Levitated Dipole
Inertial confinement: –
Laser driven – Z-pinch – Bubble fusion (acoustic confinement) – Fusor (electrostatic confinement)
Other forms of fusion: –
Muon-catalyzed fusion – Pyroelectric fusion – Migma – Polywell – Dense plasma focus

List of fusion experiments

Magnetic confinement devices
ITER (International) | JET (European) | JT-60 (Japan) | Large Helical Device (Japan) | KSTAR (Korea) | EAST (China) | T-15 (Russia) | DIII-D (USA) | Tore Supra (France) | TFTR (USA) | NSTX (USA) | NCSX (USA) | UCLA ET (USA) | Alcator C-Mod (USA) | LDX (USA) | H-1NF (Australia) | MAST (UK) | START (UK) | ASDEX Upgrade (Germany) | Wendelstein 7-X (Germany) | TCV (Switzerland) | DEMO (Commercial)

Inertial confinement devices
Laser driven:NIF (USA) | OMEGA laser (USA) | Nova laser (USA) | Novette laser (USA) | Nike laser (USA) | Shiva laser (USA) | Argus laser (USA) | Cyclops laser (USA) | Janus laser (USA) | Long path laser (USA) | 4 pi laser (USA) | LMJ (France) | Luli2000 (France) | GEKKO XII (Japan) | ISKRA lasers (Russia) | Vulcan laser (UK) | Asterix IV laser (Czech Republic) | HiPER laser (European)
Non-laser driven: — Z machine (USA) |

See also: International Fusion Materials Irradiation Facility

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "H-1NF". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE