My watch list  

Retinylidene protein

Retinylidene proteins are a family of proteins that use retinal as chromophore for light reception. This group of proteins is also commonly referred to as rhodopsins. They are the molecular basis for a variety of light-sensing systems from phototaxis in flagellates to eye sight in animals.



All rhodopsins consist of two building blocks, a protein moiety and a reversibly covalently bound non-protein cofactor, retinal (retinaldehyde). The protein structure of rhodopsin consists of a bundle of seven transmembrane helices that form an internal pocket binding the photoreactive chromophore. They form a superfamily with other membrane-bound receptors containing seven transmembrane domains, for example odor and chemokine receptors.[1]

Mechanism of light reception

Instead of being activated by binding chemical ligands like their relatives, rhodopsins contain retinal which changes conformation in reaction to light via photoisomerization and thus are activated by light. The retinal molecule can take on several different cis-trans isomeric forms, such as all-trans, 11-cis and 13-cis. Photoisomerization (light-dependent isomerization) of retinal from cis to trans or vice versa induces a conformational change in the receptor protein. This change acts as a molecular switch to activate a signal transduction mechanism within the cell. Depending on the type of rhodopsin, it either opens an ion channel (for example in bacteria) or activates an associated G protein and triggers a second messenger cascade (for example in animal eyes).

Types of rhodopsins

Retinylidene proteins or rhodopsins are present in many species from bacteria to algae and animals. They can be divided into two distinct groups based on their sequence as well as the retinal isomer they contain at the ground state and their signal transduction mechanisms.

Ion channels and pumps

Rhodopsins found in prokaryotes and algae commonly contain an all-trans retinal isomer at the ground state that isomerizes to 13-cis upon light activation, also known as microbial-type chromophore. Examples are bacterial sensory rhodopsins, channelrhodopsin, bacteriorhodopsin, halorhodopsin, and proteorhodopsin. They act as light-gated ion channels and can be further distinguished by the type of ion they channel. Bacteriorhodopsin functions as a proton pump, whereas halorhodopsin act as a chloride channel. Their functions range from bacterial photosynthesis (bacteriorhodopsin) to driving phototaxis (channelrhodopsins in flagellates). Signal transduction in phototaxis involves depolarization of the cell membrane.[2]

G protein-coupled receptors

The retinylidene proteins of the animal kingdom are also referred to as opsins. Vertebrates contain five subfamilies of (rhod)opsins and arthropods three subfamilies [3]. Opsins belong to the class of G protein-coupled receptors and bind an 11-cis isomer of retinal at the ground state that photoisomerizes to an all-trans retinal upon light activation. They are commonly found in the light-sensing organs, for example in the photoreceptor cells of vertebrate retina where they facilitate eye sight. Animal opsins can also be found in the skin of amphibians, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. They can be categorized into several distinct classes including:

Visual perception

Main article: visual cycle

The "visual purple" rhodopsin (opsin-2) of the rod cells in the vertebrate retina absorbs green-blue light. The photopsins of the cone cells of the retina differ in a few amino acids resulting in a shift of their light absorption spectra. The three human photopsins absorb yellowish-green (photopsin I), green (photopsin II), and bluish-violet (photopsin III) light and are the basis of color vision, whereas the more light-sensitive "visual purple" is responsible for the monochromatic vision in the dark. Light signal transduction involves an enzyme cascade of G-proteins (transducin), cGMP phosphodiesterase, closure of a cation channel and ultimately hyperpolarization of the visual photoreceptor cell.[4]

The visual rhodopsins of arthropods and molluscs differ from the vertebrate proteins in their signal transduction cascade involving G-proteins, phospholipase C, and ultimately depolarization of the visual photoreceptor cell.[4]


Other opsins found in humans include encephalopsin (or panopsin, opsin-3), melanopsin (opsin-4), neuropsin (opsin-5) and peropsin. Melanopsin is involved in the light entrainment of the circadian clock in vertebrates. Encephalopsins and neuropsins are highly expressed in nerve cells and brain tissue, but so far their function is unknown. Peropsin binds all-trans retinal (microbial-type chromophore) and might function as a photoisomerase to return retinal to the 11-cis isomer form needed in visual perception.[4]

See also


  1. ^ Sakmar T (2002). "Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same". Curr Opin Cell Biol 14 (2): 189-95. PMID 11891118.
  2. ^ Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005). "Channelrhodopsins: directly light-gated cation channels". Biochem Soc Trans 33 (Pt 4): 863-6. PMID 16042615.
  3. ^ G Protein-Coupled Receptor Data Base
  4. ^ a b c Terakita A (2005). "The opsins". Genome Biol 6 (3): 213. PMID 15774036.
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Retinylidene_protein". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE