My watch list
my.chemeurope.com  
Login  

A chemical criterion for rating movies

The isoprene concentration in the air is an objective indicator for setting the age rating of films

15-Oct-2018

Photo by Felix Mooneeram on Unsplash

A measurable criterion now exists for determining the age rating of films. A group of scientists at the Max Planck Institute for Chemistry in Mainz has found that the concentration of isoprene in cinema air correlates with the cinema industry‘s voluntary classification of films. Evidently, the more nervous and tense people are, the more variable is the isoprene they emit. This can be used to deduce how “stressful” a film might be for children and adolescents.

The age from which children are allowed to watch a movie has so far been based on subjective judgments. In Germany, the Voluntary Self Regulation of the Movie Industry (FSK) classifies films after carefully examining their content. Some movies such as The Lion King are released for all ages, whereas others such as Harry Potter, Star Wars and Dracula are only suitable for viewers aged 6, 12, 16 or 18 respectively. Ultimately, the classification is fairly subjective.

Researchers at the Max Planck Institute for Chemistry in Mainz have now developed a method that can objectively evaluate the age at which children and adolescents can safely watch a movie. They measured the composition of air in cinemas as well as levels of volatile organic compounds (VOCs) during 135 screenings of eleven different movies. Over 13,000 audience members were involved. For a variety of film genres and age groups, the researchers found that isoprene levels reliably correlate with the age rating of a film. “Isoprene appears to be a good indicator of emotional tension within a group,” says Jonathan Williams, group leader at the Max Planck Institute for Chemistry. “Our approach could therefore provide an objective criterion for deciding how movies should be classified.”

Isoprene is formed by metabolic processes and is stored in muscle tissue. It is released via the circulatory system, expired air and the skin whenever we move. “Evidently, we involuntarily squirm back and forth on our cinema seat or tense our muscles when we become nervous or excited,” Jonathan Williams explains. And how intently the audience follows a film is, in turn, a good indication of the movie’s emotional impact on children and adolescents.

If the new method were applied to an audience with representative age groups, it could help to determine the age rating of a movie in disputed cases. In addition, the measurements could show how audience reactions and age classification standards change over time.

In order to detect the chemical clues, the scientists connected a mass spectrometer to the cinema’s ventilation system. During the film screenings, the device, which can identify substances even at ppt levels, was used to track changes in the air composition by taking measurements once every 30 seconds. In this way the team analyzed the concentrations of 60 compounds. Based on the data, the scientists then created a model that compares the age classification with the data on how often and in what quantities the audience released those compounds.

Jonathan Williams has now come up with a new research idea for the unambiguous correlation they identified for isoprene. He plans to investigate whether the volatile organic compounds we emit leave a chemical fingerprint in the air, not only of tension but of other emotional states as well. His team was unable to determine this clearly during the film screenings, because scenes that elicit very different emotions follow each other in rapid succession, thereby blurring the potential air-borne chemical traces. However, by taking air measurements under controlled laboratory conditions, in collaboration with other Max Planck Institutes in Frankfurt and Nijmegen, Jonathan Williams now hopes to conduct a thorough investigation into the question of whether specific emotions leave traces in the air.

Original publication:

C. Stönner, A. Edtbauer, B. Derstroff, E. Bourtsoukidis, T. Klüpfel, J. Wicker, J. Williams; "Proof of concept study: Testing human volatile organic compounds as tools for age classification of films"; PLoS ONE 13(10): e0203044

Facts, background information, dossiers
  • isoprene
  • volatile organic compounds
  • air analytics
More about MPI für Chemie
  • News

    Multiyear Tracking of Atmospheric Radicals

    Hydroxyl radicals (OH) keep our atmosphere clean. They react away toxic gases such as carbon monoxide (CO), and slow climate warming by removing greenhouse gases like methane (CH4). In some parts of the atmosphere, chlorine radicals (Cl) can also help this purification process, for example ... more

    The cycling of poisonous chemicals from the past

    Persistent organic pollutants are toxic chemicals that cannot decompose in nature, or only do so very slowly, and are harmful to the environment. Through accumulation along food chains they also have significant negative effects on human health. Nowadays, many of them are banned. Traces of ... more

    Surprise from the jungle soil

    The Amazon rainforest is the largest forest on earth. Its trees emit huge amounts of volatile substances that influence the chemical composition of the air. Some of these substances are the so-called sesquiterpenes, very reactive chemicals that can rapidly consume ozone. Until recently scie ... more

More about Max-Planck-Gesellschaft
  • News

    Goodbye, silicon?

    Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking thos ... more

    Electrons go with the flow

    You turn on a switch and the light switches on because electricity "flows". The usual perception is that this is like opening a faucet and the water starts to flow. But this analogy is misleading. The flow of water is determined by the theory of hydrodynamics, where the behavior of the flui ... more

    Molecular multitools

    The functionalization of surfaces with different physical or chemical properties is a key challenge for many applications. For example, the defined structuring of a surface with hydrophobic and hydrophilic areas can be used for the separation of emulsions, like water and oil. However, the c ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE